936 resultados para SUPERCRITICAL-FLUID CHROMATOGRAPHY
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Spent coffee grounds (SCG), which are the residue obtained from the treatment of coffee with hot water or steam, can be used for industrial applications, due to the high content in lipids. The cosmetic products might be a suitable application for these types of residues because the barrier properties of the stratum corneum (SC) are largely dependent on the intactness of the lipid lamellae that surrounds the corneocytes. The purpose of this work was to assess the feasibility of using the lipid fraction of SCG extracted with supercritical carbon dioxide in the development of new cosmetic formulations with improved skin lipids (sebum) and hydration. The use of spent coffee lipid extract in cosmetic industry seems to be a suitable approach to recycle the wastes from coffee industry. Emulsion containing 10% of the lipid fraction of SCG (SpentCofOil cream) presented promising characteristics in the improvement of sebum skin levels with a good acceptance by consumers when compared to an emulsion containing 10% w/w of green coffee oil (GreenCofOil cream) and a placebo without coffee oil (NoCofOil cream). Practical applications: In this work, the authors develop and characterize a cream containing 10% of the lipid fraction of SCG extracted with supercritical carbon dioxide with improved skin lipids (sebum) and hydration. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A extração com fluido supercrítico de materiais líquidos e sólidos despertou o interesse para aplicações industriais nas últimas décadas, mais particularmente sob o conceito de química verde e biorrefinarias, portanto é fundamental que se faça uma modelagem desse processo a fim de otimizar as condições operacionais e simular o processo. O objetivo geral deste trabalho consiste na determinação de parâmetros de transferência de massa do processo de extração supercrítica de matriz sólida, empregando o dióxido de carbono como solvente, a partir de dados cinéticos de extração e na avaliação sistemática de cinco modelos matemáticos para descrever as cinéticas de extração dos óleos da polpa e da casca do buriti, do óleo de açaí de da oleoresina de cúrcuma, medidas no Laboratório de Extração Supercrítica, da Faculdade de Engenharia Química (UFPA), a fim de contribuir para o estudo de ampliação de escala e análise de custo de produção. Foram avaliados os modelos de Tan e Liou, Goto et al. (1993), Martinez et al. (2003), Esquível et al. (1999), e Sovová (1994). A modelagem das cinéticas de extração foi realizada utilizando aplicativos computacionais desenvolvidos e validados neste trabalho a partir de diferentes dados experimentais publicados na literatura. Diante de 40 cinéticas medidas com diferentes equipamentos de extração, configurações de leito, tipos de matérias primas, preparo dos materiais, pressão e temperatura e outros parâmetros de processo (com destaque ao rendimento global e a vazão de solvente), foi construído um panorama dos resultados acerca da capacidade dos modelos de transferência de massa em descrever as mais diferentes curvas globais de extração. De forma geral, os modelos de Goto et al. (1993) e Sovová (1994) apresentaram as melhores previsões aos dados experimentais das matérias primas tratadas neste trabalho com menores valores de quadrado, erros relativo, faixa de erro e desvios padrão e valores de R2 próximos da unidade.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Na medicina popular brasileira, sementes de gergelim preto (Sesamum indicum L) é um dos mais importantes ingrediente presentes em um chá usado para tratar vítimas de acidente vascular encefálico (AVE). Porém, o isolamento de extratos de gergelim preto para fins medicinais usando a tecnologia do fluido supercrítico não foi realizado. O objetivo deste trabalho foi investigar algumas variáveis de processo da extração com fluido supercrítico em sementes de gergelim preto para gerar extratos aplicáveis a pesquisa do AVE isquêmico focal. Duas isotermas (40 e 60 ºC) foram exploradas, combinadas com pressões de 200-400 bar, em vazão mássica de CO2 constante de 5,9 x 10-5 kg/s. Os rendimentos globais foram de 37-53% em base seca. O maior rendimento foi obtido em 60 ºC e 400 bar. A composição de ácidos graxos mostrou uma elevada razão de insaturados/ saturados. A análise de conteúdo de fitosteróis no extrato de maior rendimento revelou maiores quantidades de β-sitosterol + sitostanol, colesterol, campesterol + campestanol + 24-metileno colesterol, Δ-5 avenasterol and estigmasterol, enquanto que menores níveis de Δ-5,24 estigmastadienol, brassicasterol, clerosterol + Δ-5-23 estigmastadienol, Δ-7 avenasterol, eritrodiol and Δ-7 estigmastenol foram observados. As curvas de extração das extrações com fluido supercrítico no menor e maior rendimento mássico (200 e 400 bar a 60 ºC) foram ajustadas pelos modelos de Tan e Liou (1989), Martinez et al. (2003), Esquível et al. (1999), Goto et al. (1993) e Sovová (1994 e 2012). Os modelos de Tan e Liou (1989), Goto et al. (1993) e Sovová (1994 e 2012) apresentaram as melhores valores nominais de somas residuais dos quadrados. Experimentos pilotos sugerem que o extrato obtido via fluido supercrítico de gergelim preto é neuroprotetor em relação a isquemia focal por endotelina-1 no córtex motor de ratos machos adultos, observada a redução da área de infarto isquêmico.
Resumo:
Results of direct geological and geochemical observations of the modern Rainbow hydrothermal field (Mid-Atlantic Ridge, 36°14'N; 33°54'W) carried out from the deep-sea manned Mir submersibles during Cruises 41 and 42 of the R/V Akademik Mstislav Keldysh in 1998-1999 and data of laboratory studies of collected samples are under consideration in the paper. The field lacks neovolcanic rocks and the axial part of the rift is filled in with a serpentinite protrusion. In this field there occur metalliferous sediments, as well as active and relict sulfide edifices composed of sulfide minerals; pyrrhotite, chalcopyrite, isocubanite, sphalerite, marcasite, pyrite, bornite, chalcosine, digenite, magnetite, anhydrite, rare troilite, wurtzite, millerite, and pentlandite have been determined. Sulfide ores are characterized by concentric-zoned textures. During in situ measurements during 35 minutes temperature of hydrothermal fluids was varying within a range from 250 to 350°C. Calculated chemical and isotopic composition of hydrothermal fluid shows elevated concentrations of Cl, Ni, Co, CH4, and H2. Values of d34S of H2S range from +2.4 to +3.1 per mil, of d13C of CH4 from -15.2 to -11.2 per mil, and d13C of CO2 from +1.0 to -4.0 per mil. Fluid inclusions are homogenized at temperatures from 140 to 360°C, whereas salinity of the fluid varies from 4.2 to 8.5 wt %. d34S values of sulfides range from +1.3 to +12.5 per mil. 3He/4He ratio in mineral-forming fluid contained in the fluid inclusions from sulfides of the Rainbow field varies from 0.00000374 to 0.0000101. It is shown that hydrothermal activity in the area continues approximately during 100 ka. It is assumed that the fluid and sulfide edifices contain components from the upper mantle. A hypothesis of phase separation of a supercritical fluid that results in formation of brines is proposed. Hydrothermal activity is related to the tectonic, not volcanic, phase of the Mid-Atlantic Ridge evolution.
Resumo:
CO2 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic CO2 into the atmosphere. CCS technologies are expected to account for the 20% of the CO2 reduction by 2050. One of the main concerns of CCS is whether CO2 may remain confined within the geological formation into which it is injected since post-injection CO2 migration in the time scale of years, decades and centuries is not well understood. Theoretically, CO2 can be retained at depth i) as a supercritical fluid (physical trapping), ii) as a fluid slowly migrating in an aquifer due to long flow path (hydrodynamic trapping), iii) dissolved into ground waters (solubility trapping) and iv) precipitated secondary carbonates. Carbon dioxide will be injected in the near future (2012) at Hontomín (Burgos, Spain) in the frame of the Compostilla EEPR project, led by the Fundación Ciudad de la Energía (CIUDEN). In order to detect leakage in the operational stage, a pre-injection geochemical baseline is presently being developed. In this work a geochemical monitoring design is presented to provide information about the feasibility of CO2 storage at depth.
Resumo:
Coal fired power generation will continue to provide energy to the world for the foreseeable future. However, this energy use is a significant contributor to increased atmospheric CO2 concentration and, hence, global warming. Capture and disposal Of CO2 has received increased R&D attention in the last decade as the technology promises to be the most cost effective for large scale reductions in CO2 emissions. This paper addresses CO2 transport via pipeline from capture site to disposal site, in terms of system optimization, energy efficiency and overall economics. Technically, CO2 can be transported through pipelines in the form of a gas, a supercritical. fluid or in the subcooled liquid state. Operationally, most CO2 pipelines used for enhanced oil recovery transport CO2 as a supercritical fluid. In this paper, supercritical fluid and subcooled liquid transport are examined and compared, including their impacts on energy efficiency and cost. Using a commercially available process simulator, ASPEN PLUS 10.1, the results show that subcooled liquid transport maximizes the energy efficiency and minimizes the Cost Of CO2 transport over long distances under both isothermal and adiabatic conditions. Pipeline transport of subcooled liquid CO2 can be ideally used in areas of cold climate or by burying and insulating the pipeline. In very warm climates, periodic refrigeration to cool the CO2 below its critical point of 31.1 degrees C, may prove economical. Simulations have been used to determine the maximum safe pipeline distances to subsequent booster stations as a function of inlet pressure, environmental temperature and ground level heat flux conditions. (c) 2005 Published by Elsevier Ltd.
Resumo:
The ability to tune the structural and chemical properties of colloidal nanoparticles (NPs), make them highly advantageous for studying activity and selectivity dependent catalytic behaviour. Incorporating pre-synthesized colloidal NPs into porous supports materials remains a challenge due to poor wetting and pore permeability. In this report monodisperse, composition controlled AgPd alloy NPs were synthesised and embedded into SBA-15 using supercritical carbon dioxide and hexane. Supercritical fluid impregnation resulted in high metal loading without the requirement for surface pre-treatments. The catalytic activity, reaction profiles and recyclability of the alloy NPs embedded in SBA-15 and immobilised on non-porous SiO2 are evaluated. The NPs incorporated within the SBA-15 porous network showed significantly greater recyclability performance compared to non-porous SiO2.
Resumo:
Microalgae have a wide range of application fields, from food to fuels, to pharmaceuticals & fine chemicals, aquaculture and environmental bioremediation, among others. Spirulina and Chlorella have been used as food sources since ancient times, due to their high and balanced nutritional value. Our research group in Lisbon has developed a range of food products (emulsions, gelled desserts, biscuits and pastas) enriched with freshwater and marine microalgae (Spirulina, Chlorella, Haematococcus, Isochrysis and Diacronema). The developed products presented attractive and stable colours, high resistance to oxidation and enhanced rheological properties. Some of these products will be prepared at the Post-Congress Course “Functional Foods Development” at the University of Antofagasta. More recently, a great interest has arisen on using microalgae for biofuel production. The same group has also been exploring several marine and freshwater species for biofuel production (e.g., biodiesel, bioethanol, biohydrogen and biomethane) within a biorefinery approach, in order to obtain high and low-value co-products using integral biomass maximizing the energy revenue. Namely, supercritical fluid extraction of Nannochloropsis sp. allowed the recovery of valuable carotenoids and lipids, prior to bioH2 production through dark fermentation of the residual biomass. Also, Scenedesmus obliquus residues after sugars (for bioethanol) and lipids (for biodiesel) extraction has been anaerobically digested attaining high biomethane yields. Regarding sustainability issues, the current trend of our group is now focused on using liquid effluents and high CO2 levels for low cost microalgae growth, contributing to a lower water demand, primary energy consumption and global warming potential by reducing the need for potable water and fertilizers (P, N) and increasing CO2 mitigation. Microalgae biomass has been successfully used for urban wastewater treatment with subsequent bioH2 production, in a biorefinery approach. Presently, ammonium-rich raw effluents from piggeries and poultry industry are being effectively used for microalgae growth avoiding any pre-treatment step.
Resumo:
This work provides experimental phase diagram of mitotane, a drug used in the chemotherapy treatment of adrenocortical carcinoma, in compressed and/or supercritical CO(2). The synthetic-static method in a high-pressure variable-volume view cell coupled with a transmitted-light intensity probe was used to measure the solid-fluid (SF) equilibrium data. The phase equilibrium experiments were determined in temperature ranging from (298.2 to 333.1) K and pressure up to 22 MPa. Peng-Robinson equation of state (PR-EoS) with classical mixing rule was used to correlate the experimental data. Excellent agreement was found between experimental and calculated values. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Chromatographic separation of highly polar basic drugs with ideal ionspray mass spectrometry volatile mobile phases is a difficult challenge. A new quantification procedure was developed using hydrophilic interaction chromatography-mass spectrometry with turbo-ionspray ionization in the positive mode. After addition of deuterated internal standards and simple clean-up liquid extraction, the dried extracts were reconstituted in 500 microL pure acetonitrile and 5 microL was directly injected onto a Waters Atlantis HILIC 150- x 2.1-mm, 3-microm column. Chromatographic separations of cocaine, seven metabolites, and anhydroecgonine were obtained by linear gradient-elution with decreasing high concentrations of acetonitrile (80-56% in 18 min). This high proportion of organic solvent makes it easier to be coupled with MS. The eluent was buffered with 2 mM ammonium acetate at pH 4.5. Except for m-hydroxy-benzoylecgonine, the within-day and between-day precisions at 20, 100, and 500 ng/mL were below 7 and 19.1%, respectively. Accuracy was also below +/- 13.5% at all tested concentrations. The limit of quantification was 5 ng/mL (%Diff < 16.1, %RSD < 4.3) and the limit of detection below 0.5 ng/mL. This method was successfully applied to a fatal overdose. In Switzerland, cocaine abuse has dramatically increased in the last few years. A 45-year-old man, a known HIV-positive drug user, was found dead at home. According to relatives, cocaine was self-injected about 10 times during the evening before death. A low amount of cocaine (0.45 mg) was detected in the bloody fluid taken from a syringe discovered near the corpse. Besides injection marks, no significant lesions were detected during the forensic autopsy. Toxicological investigations showed high cocaine concentrations in all body fluids and tissues. The peripheral blood concentrations of cocaine, benzoylecgonine, and methylecgonine were 5.0, 10.4, and 4.1 mg/L, respectively. The brain concentrations of cocaine, benzoylecgonine, and methylecgonine were 21.2, 3.8, and 3.3 mg/kg, respectively. The highest concentrations of norcocaine (about 1 mg/L) were measured in bile and urine. Very high levels of cocaine were determined in hair (160 ng/mg), indicating chronic cocaine use. A low concentration of anhydroecgonine methylester was also found in urine (0.65 mg/L) suggesting recent cocaine inhalation. Therapeutic blood concentrations of fluoxetine (0.15 mg/L) and buprenorphine (0.1 microg/L) were also discovered. A relatively high concentration of Delta(9)-THC was measured both in peripheral blood (8.2 microg/L) and brain cortex (13.5 microg/kg), suggesting that the victim was under the influence of cannabis at the time of death. In addition, fluoxetine might have enhanced the toxic effects of cocaine because of its weak pro-arrhythmogenic properties. Likewise, combination of cannabinoids and cocaine might have increase detrimental cardiovascular effects. Altogether, these results indicate a lethal cocaine overdose with a minor contribution of fluoxetine and cannabinoids.