892 resultados para SUBSTANTIA-NIGRA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The superior colliculus (SC) is responsible for sensorimotor transformations required to direct gaze toward or a way from unexpected, biologically salient events. Significant changes in the external world are signaled to SC through primary multisensory afferents, spatially organized according to a retinotopic topography. For animals, where anunexpected event could indicate the presence of either predator or prey, early decisions to approach or avoid are particularly important. Rodents' ecology dictates predators are most often detected initially as movements in upper visual field (mapped in medial SC), while appetitive stimuli are normally found in lower visual field (mapped in lateral SC). Our purpose was to exploit this functional segregation to reveal neural sites that can bias or modulate initial approach or avoidance responses. Small injections of Fluoro-Gold were made into medial or lateral sub-regions of intermediate and deep layers of SC (SCm/SCl). A remarkable segregation of input to these two functionally defined areas was found. (i) There were structures that projected only to SCm (e.g., specific cortical areas, lateral geniculate and suprageniculate thalamic nuclei, ventromedial and premammillary hypothalamic nuclei, and several brain-stem areas) or SCl (e.g., primary somatosensory cortex representing upper body parts and vibrissae and parvicellular reticular nucleus in the brainstem). (ii) Other structures projected to both SCm and SCl but from topographically segregated populations of neurons (e.g., zona incerta and substantia nigra pars reticulata). (iii) There were a few brainstem areas in which retrogradely labeled neurons were spatially overlapping (e.g., pedunculopontine nucleus and locus coeruleus). These results indicate significantly more structures across the rat neuraxis are in a position to modulate defense responses evoked from SCm, and that neural mechanisms modulating SC-mediated defense or appetitive behavior are almost entirely segregated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of the substantia nigra pars reticulata (SNPr) and superior colliculus (SC) network in rat strains susceptible to audiogenic seizures still remain underexplored in epileptology. In a previous study from our laboratory, the GABAergic drugs bicuculline (BIC) and muscimol (MUS) were microinjected into the deep layers of either the anterior SC (aSC) or the posterior SC (pSC) in animals of the Wistar audiogenic rat (WAR) strain submitted to acoustic stimulation, in which simultaneous electroencephalographic (EEG) recording of the aSC, pSC, SNPr and striatum was performed. Only MUS microinjected into the pSC blocked audiogenic seizures. In the present study, we expanded upon these previous results using the retrograde tracer Fluorogold (FG) microinjected into the aSC and pSC in conjunction with quantitative EEG analysis (wavelet transform), in the search for mechanisms associated with the susceptibility of this inbred strain to acoustic stimulation. Our hypothesis was that the WAR strain would have different connectivity between specific subareas of the superior colliculus and the SNPr when compared with resistant Wistar animals and that these connections would lead to altered behavior of this network during audiogenic seizures. Wavelet analysis showed that the only treatment with an anticonvulsant effect was MUS microinjected into the pSC region, and this treatment induced a sustained oscillation in the theta band only in the SNPr and in the pSC. These data suggest that in WAR animals, there are at least two subcortical loops and that the one involved in audiogenic seizure susceptibility appears to be the pSC-SNPr circuit. We also found that WARs presented an increase in the number of FG + projections from the posterior SNPr to both the aSC and pSC (primarily to the pSC), with both acting as proconvulsant nuclei when compared with Wistar rats. We concluded that these two different subcortical loops within the basal ganglia are probably a consequence of the WAR genetic background. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ether A go-go (Eag) gene encodes the voltage-gated potassium (K+) ion channel Kv10.1, whose function still remains unknown. As dopamine may directly affect K+ channels, we evaluated whether a nigrostriatal dopaminergic lesion induced by the neurotoxin 6-hydroxydopamine (6-OHDA) would alter Eag1-K+ channel expression in the rat basal ganglia and related brain regions. Male Wistar rats received a microinjection of either saline or 6-OHDA (unilaterally) into the medial forebrain bundle. The extent of the dopaminergic lesion induced by 6-OHDA was evaluated by apomorphine-induced rotational behavior and by tyrosine hydroxylase (TH) immunoreactivity. The 6-OHDA microinjection caused a partial or complete lesion of dopaminergic cells, as well as a reduction of Eag1+ cells in a manner proportional to the extent of the lesion. In addition, we observed a decrease in TH immunoreactivity in the ipsilateral striatum. In conclusion, the expression of the Eag1-K+-channel throughout the nigrostriatal pathway in the rat brain, its co-localization with dopaminergic cells and its reduction mirroring the extent of the lesion highlight a physiological circuitry where the functional role of this channel can be investigated. The Eag1-K+ channel expression in dopaminergic cells suggests that these channels are part of the diversified group of ion channels that generate and maintain the electrophysiological activity pattern of dopaminergic midbrain neurons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transcranial sonography has become a useful tool in the differential diagnosis of parkinsonian syndromes. This is a non-invasive, low cost procedure. The main finding on transcranial sonography in patients with idiopathic Parkinson's disease is an increased echogenicity of the mesencephalic substantia nigra region. This hyperechogenicity is present in more than 90% of cases, and reflects a dysfunction in the dopaminergic nigrostriatal pathway. This study discussed how the hyperechogenicity of the substantia nigra may facilitate the differential diagnosis of parkinsonian syndromes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration, neuroprotection and neuronal plasticity. The CB1 cannabinoid receptors are abundantly expressed in the basal ganglia, the circuitry that is mostly affected in Parkinson’s Disease (PD). Some studies show variation of CB1 expression in basal ganglia in different animal models of PD, however the results are quite controversial, due to the differences in the procedures employed to induce the parkinsonism and the periods analyzed after the lesion. The present study evaluated the CB1 expression in four basal ganglia structures, namely striatum, external globus pallidus (EGP), internal globus pallidus (IGP) and substantia nigra pars reticulata (SNpr) of rats 1, 5, 10, 20, and 60 days after unilateral intrastriatal 6-hydroxydopamine injections, that causes retrograde dopaminergic degeneration. We also investigated tyrosine hydroxylase (TH), parvalbumin, calbindin and glutamic acid decarboxylase (GAD) expression to verify the status of dopaminergic and GABAergic systems. We observed a structure-specific modulation of CB1 expression at different periods after lesions. In general, there were no changes in the striatum, decreased CB1 in IGP and SNpr and increased CB1 in EGP, but this increase was not sustained over time. No changes in GAD and parvalbumin expression were observed in basal ganglia, whereas TH levels were decreased and the calbindin increased in striatum in short periods after lesion. We believe that the structure-specific variation of CB1 in basal ganglia in the 6-hydroxydopamine PD model could be related to a compensatory process involving the GABAergic transmission, which is impaired due to the lack of dopamine. Our data, therefore, suggest that the changes of CB1 and calbindin expression may represent a plasticity process in this PD model

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We explored the impact of Nox-2 in modulating inflammatory-mediated microglial responses in the 6-hydroxydopamine (6-OHDA)-induced Parkinson’s disease (PD) model. Nox1 and Nox2 gene expression were found to increase in striatum, whereas a marked increase of Nox2 expression was observed in substantia nigra (SN) of wild-type (wt) mice after PD induction. Gp91phox-/- 6-OHDA-lesioned mice exhibited a significant reduction in the apomorphine-induced rotational behavior, when compared to wt mice. Immunolabeling assays indicated that striatal 6-OHDA injections reduced the number of dopaminergic (DA) neurons in the SN of wt mice. In gp91phox-/- 6-OHDA-lesioned mice the DA degeneration was negligible, suggesting an involvement of Nox in 6-OHDA-mediated SN degeneration. Gp91phox-/- 6-OHDA-lesioned mice treated with minocycline, a tetracycline derivative that exerts multiple anti-inflammatory effects, including microglial inhibition, exhibited increased apomorphine-induced rotational behavior and degeneration of DA neurons after 6-OHDA injections. The same treatment also increased TNF-α release and potentiated NF-κB activation in the SN of gp91phox-/--lesioned mice. Our results demonstrate for the first time that inhibition of microglial cells increases the susceptibility of gp91phox-/- 6-OHDA lesioned mice to develop PD. Blockade of microglia leads to NF-κB activation and TNF-α release into the SN of gp91phox-/- 6-OHDA lesioned mice, a likely mechanism whereby gp91phox-/- 6-OHDA lesioned mice may be more susceptible to develop PD after microglial cell inhibition. Nox2 adds an essential level of regulation to signaling pathways underlying the inflammatory response after PD induction

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bei der Parkinsonschen Krankheit kommt es zu einer selektiven Degeneration der dopaminergen Neurone in der Substantia nigra pars compacta. Die Rolle des oxidativen Stresses in der Pathogenese dieser Erkrankung konnte an post mortem Untersuchungen der Parkinson-Patienten, wie auch an zahlreichen in vitro und in vivo Modellen bestätigt werden. Die Anwendung von Antioxidantien wurde als therapeutische Strategie der Parkinsonschen Krankheit vorgeschlagen. In dieser Hinsicht wurden bereits antioxidative Substanzen in klinischen Studien evaluiert. Klinische Studien mit Antioxidantien haben jedoch bislang nur wenig überzeugende Ergebnisse erbracht, mit Ausnahme des Einsatzes des Ubichinons (Coenzym Q). Eine kritische Analyse der klinischen Studien lässt zusammenfassen, dass auf Seiten der verwendeten Antioxidantien noch massiver Optimierungsbedarf besteht. Für einen erfolgreichen therapeutischen Einsatz von Antioxidantien bei dieser Krankheit sind folgende Eigenschaften der Substanzen von höchster Bedeutung: i) maximale neuroprotektive Aktivität bei geringen Dosen; ii) geringe Nebenwirkungen; iii) eine hohe Blut-Hirn-Schrankengängigkeit.In dieser Arbeit wurde das neuroprotektive Potential von drei Bisarylimin-basierten antioxidativen Strukturen (Phenothiazin, Iminostilben und Phenoxazin) in in vitro und in vivo Parkinson-Modellsystemen evaluiert. Beide experimentellen Modelle basieren auf der Wirkung der mitochondrialen Komplex I Inhibitoren 1-Methyl-4-Phenylpyridin (MPP+) und Rotenon, welche pathophysiologische Charakteristika der Parkinsonschen Krankheit reproduzieren. Unsere in vitro Untersuchungen an primären Neuronen des Mittelhirns und der klonalen SH-SY5Y-Neuroblastomazelllinie konnten zeigen, dass die Komplex I Inhibition krankheitsspezifische zelluläre Merkmale induziert, wie die Abnahme der antioxidativen Verteidigungskapazität und Verlust des mitochondrialen Membranpotentials. Zusätzlich kommt es in primären Neuronen des Mittelhirns zur selektiven Degeneration dopaminerger Neurone, welche in der Parkinsonschen Erkrankung besonders betroffen sind. Ko-Inkubation der in vitro Modelle mit Phenothiazin, Iminostilben und Phenoxazin in niedrigen Konzentrationen (50 nM) halten die pathologischen Prozesse fast vollständig auf. In vivo Untersuchungen am MPP+- und Rotenon-basierten Caenorhabditis elegans (C. elegans) Modell bestätigen das neuroprotektive Potential der Bisarylimine. Hierfür wurde eine transgene C. elegans Linie mithilfe einer dopaminerg spezifischen DsRed2- (Variante des rot fluoreszierenden Proteins von Discosoma sp.)-Expression und pan-neuronaler CFP- (cyan fluoreszierendes Protein)-Expression zur Visualisierung der dopaminergen Neuronenpopulation in Kontrast zum Gesamtnervensystem erstellt. Behandlung des C. elegans mit MPP+ und Rotenon im larvalen und adulten Stadium führt zu einer selektiven Degeneration dopaminerger Neurone, sowie zum Entwicklungsarrest der larvalen Population. Die dopaminerge Neurodegeneration, wie auch weitere phänotypische Merkmale des C. elegans Modells, können durch Phenothiazin, Iminostilben und Phenoxazin in niedrigen Konzentrationen (500 nM) komplett verhindert werden. Ein systemischer Vergleich aromatischer Bisarylimine mit bekannten, gut charakterisierten Antioxidantien, wie α-Tocopherol (Vitamin E), Epigallocatechingallat und β-Catechin, zeigt, dass effektive Konzentrationen für Phenothiazin, Iminostilben und Phenoxazin um Zehnerpotenzen niedriger liegen im Vergleich zu natürlichen Antioxidantien. Der Wirkungsmechanismus der Bisarylimine konnte in biochemischen und in vitro Analysen, sowie in Verhaltensuntersuchungen an C. elegans von der Wirkungsweise strukturell ähnlicher, neuroleptisch wirkender Phenothiazin-Derivate differenziert werden. Die Analyse des dopaminerg-gesteuerten Verhaltens (Beweglichkeit) in C. elegans konnte verdeutlichen, dass antioxidative und Dopaminrezeptor-bindende Eigenschaften der Bisaryliminstrukturen sich gegenseitig ausschließen. Diese qualitativen Merkmale unterscheiden Bisarylimine fundamental von klinisch angewandten Neuroleptika (Phenothiazin-Derivate), welche als Dopaminrezeptor-Antagonisten zur Behandlung psychischer Erkrankungen klinisch eingesetzt werden.Aromatische Bisarylimine (Phenothiazin, Iminostilben und Phenoxazin) besitzen günstige strukturelle Eigenschaften zur antioxidativ-basierter Neuroprotektion. Durch die Anwesenheit der antioxidativ wirkenden, nicht-substituierten Iminogruppe unterscheiden sich Bisarylimine grundlegend von neuroleptisch-wirkenden Phenothiazin-Derivaten. Wichtige strukturelle Voraussetzungen eines erfolgreichen antioxidativen Neuropharmakons, wie eine hohe Radikalisierbarkeit, die stabile Radikalform und der lipophile Charakter des aromatischen Ringsystems, werden in der Bisaryliminstruktur erfüllt. Antioxidative Bisarylimine könnten in der Therapie der Parkinsonschen Krankheit als eine effektive neuroprotektiv-therapeutische Strategie weiter entwickelt werden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parkinson’s disease is a neurodegenerative disorder due to the death of the dopaminergic neurons of the substantia nigra of the basal ganglia. The process that leads to these neural alterations is still unknown. Parkinson’s disease affects most of all the motor sphere, with a wide array of impairment such as bradykinesia, akinesia, tremor, postural instability and singular phenomena such as freezing of gait. Moreover, in the last few years the fact that the degeneration in the basal ganglia circuitry induces not only motor but also cognitive alterations, not necessarily implicating dementia, and that dopamine loss induces also further implications due to dopamine-driven synaptic plasticity got more attention. At the present moment, no neuroprotective treatment is available, and even if dopamine-replacement therapies as well as electrical deep brain stimulation are able to improve the life conditions of the patients, they often present side effects on the long term, and cannot recover the neural loss, which instead continues to advance. In the present thesis both motor and cognitive aspects of Parkinson’s disease and basal ganglia circuitry were investigated, at first focusing on Parkinson’s disease sensory and balance issues by means of a new instrumented method based on inertial sensor to provide further information about postural control and postural strategies used to attain balance, then applying this newly developed approach to assess balance control in mild and severe patients, both ON and OFF levodopa replacement. Given the inability of levodopa to recover balance issues and the new physiological findings than underline the importance in Parkinson’s disease of non-dopaminergic neurotransmitters, it was therefore developed an original computational model focusing on acetylcholine, the most promising neurotransmitter according to physiology, and its role in synaptic plasticity. The rationale of this thesis is that a multidisciplinary approach could gain insight into Parkinson’s disease features still unresolved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present in situ hybridization and immunocytochemical studies in the mouse central nervous system (CNS), a strong expression of spastin mRNA and protein was found in Purkinje cells and dentate nucleus in the cerebellum, in hippocampal principal cells and hilar neurons, in amygdala, substantia nigra, striatum, in the motor nuclei of the cranial nerves and in different layers of the cerebral cortex except piriform and entorhinal cortices where only neurons in layer II were strongly stained. Spastin protein and mRNA were weakly expressed in most of the thalamic nuclei. In selected human brain regions such as the cerebral cortex, cerebellum, hippocampus, amygdala, substania nigra and striatum, similar results were obtained. Electron microscopy showed spastin immunopositive staining in the cytoplasma, dendrites, axon terminals and nucleus. In the mouse pilocarpine model of status epilepticus and subsequent temporal lobe epilepsy, spastin expression disappeared in hilar neurons as early as at 2h during pilocarpine induced status epilepticus, and never recovered. At 7 days and 2 months after pilocarpine induced status epilepticus, spastin expression was down-regulated in granule cells in the dentate gyrus, but induced expression was found in reactive astrocytes. The demonstration of widespread distribution of spastin in functionally different brain regions in the present study may provide neuroanatomical basis to explain why different neurological, psychological disorders and cognitive impairment occur in patients with spastin mutation. Down-regulation or loss of spastin expression in hilar neurons may be related to their degeneration and may therefore initiate epileptogenetic events, leading to temporal lobe epilepsy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DJ-1 is mutated in autosomal recessive, early onset Parkinson's disease but the exact localization of the DJ-1 gene product in the mammalian brain is largely unknown. We aimed to evaluate the DJ-1 mRNA expression pattern in the mouse brain. Serial coronal sections of brains of five male and five female adult mice were investigated by using in situ hybridization with a DJ-1 specific 35S-labeled oligonucleotide probe. Hybridized sections were analyzed after exposure to autoradiography films and after coating with a photographic emulsion. DJ-1 was heterogeneously expressed throughout the mouse central nervous system. A high expression of DJ-1 mRNA was detected in neuronal and non-neuronal populations of several structures of the motor system such as the substantia nigra, the red nucleus, the caudate putamen, the globus pallidus, and the deep nuclei of the cerebellum. Furthermore, DJ-1 mRNA was also highly expressed in non-motor structures including the hippocampus, the olfactory bulb, the reticular nucleus of the thalamus, and the piriform cortex. The high expression of DJ-1 mRNA in brain regions involved in motor control is compatible with the occurrence of parkinsonian symptoms after DJ-1 mutations. However, expression in other regions indicates that a dysfunction of DJ-1 may contribute to additional clinical features in patients with a DJ-1 mutation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adenosine A2A receptors are present on enkephalinergic medium sized striatal neurons in the rat and have an important function in the modulation of striatal output. In order to establish more accurately whether adenosine transmission is a generalized phenomenon in mammalian striatum we compared the A2A R expression in the mouse, rat, cat and human striatum. Secondly we compared the modulation of enkephalin gene expression and A2A receptor gene expression in rat striatal neurons after 6-OH-dopamine lesion of the substantia nigra. Hybridization histochemistry was performed with a 35S-labelled radioactive oligonucleotide probe. The results showed high expression of A2A adenosine receptor genes only in the medium-sized cells of the striatum in all examined species. In the rat striatum, expression of A2A receptors was not significantly altered after lesion of the dopaminergic pathways with 6-OH-dopamine even though enkephalin gene expression was up-regulated. The absence of a change in A2A receptor gene expression after 6-OH-dopamine treatment speaks against a dependency on dopaminergic innervation. The maintained inhibitory function of A2A R on motor activity in spite of dopamine depletion could be partly responsible for the depression of locomotor activity observed in basal ganglia disorders such as Parkinson's disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trefoil factor 1 (TFF1) belongs to a family of secreted peptides with a characteristic tree-looped trefoil structure. TFFs are mainly expressed in the gastrointestinal tract where they play a critical role in the function of the mucosal barrier. TFF1 has been suggested as a neuropeptide, but not much is known about its expression and function in the central nervous system. We investigated the expression of TFF1 in the developing and adult rat midbrain. In the adult ventral mesencephalon, TFF1-immunoreactive (-ir) cells were predominantly found in the substantia nigra pars compacta (SNc), the ventral tegmental area (VTA) and in periaqueductal areas. While around 90% of the TFF1-ir cells in the SNc co-expressed tyrosine hydroxylase (TH), only a subpopulation of the TH-ir neurons expressed TFF1. Some TFF1-ir cells in the SNc co-expressed the calcium-binding proteins calbindin or calretinin and nearly all were NeuN-ir confirming a neuronal phenotype, which was supported by lack of co-localization with the astroglial marker glial fibrillary acidic protein (GFAP). Interestingly, at postnatal (P) day 7 and P14, a significantly higher proportion of TH-ir neurons in the SNc co-expressed TFF1 as compared to P21. In contrast, the proportion of TFF1-ir cells expressing TH remained unchanged during postnatal development. Furthermore, significantly more TH-ir neurons expressed TFF1 in the SNc, compared to the VTA at all four time-points investigated. Injection of the tracer fluorogold into the striatum of adult rats resulted in retrograde labeling of several TFF1 expressing cells in the SNc showing that a significant fraction of the TFF1-ir cells were projection neurons. This was also reflected by unilateral loss of TFF1-ir cells in SNc of 6-hydroxylase-lesioned hemiparkinsonian rats. In conclusion, we show for the first time that distinct subpopulations of midbrain dopaminergic neurons express TFF1, and that this expression pattern is altered in a rat model of Parkinson's disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early diagnosis of Parkinson's disease (PD) is required to improve therapeutic responses. Indeed, a clinical diagnosis of resting tremor, rigidity, movement and postural deficiencies usually reflect >50% loss of the nigrostriatal system in disease. In a step to address this, quantitative diffusion tensor magnetic resonance imaging (DTI) was used to assess nigrostriatal degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication model of dopaminergic nigral degeneration. We now demonstrate increased average diffusion (p<0.005) and decreased fractional anisotropy (p<0.03) in the substantia nigra (SN) of 5- to 7-day MPTP-treated animals when compared to saline controls. Transverse diffusivity demonstrated the most significant differences (p < or = 0.002) and correlated with the numbers of SN dopaminergic neurons (r=-0.75, p=0.012). No differences were found in the striatum, corpus callosum, cerebral cortex, or ventricles. These results demonstrate that DTI may be used as a surrogate biomarker of nigral dopaminergic neuronal degeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fetal antigen 1/delta-like 1 homologue (FA1/dlk1) belongs to the epidermal growth factor superfamily and is considered to be a non-canonical ligand for the Notch receptor. Interactions between Notch and its ligands are crucial for the development of various tissues. Moreover, FA1/dlk1 has been suggested as a potential supplementary marker of dopaminergic neurons. The present study aimed at investigating the distribution of FA1/dlk1-immunoreactive (-ir) cells in the early postnatal and adult midbrain as well as in the nigrostriatal system of 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian adult rats. FA1/dlk1-ir cells were predominantly distributed in the substantia nigra (SN) pars compacta (SNc) and in the ventral tegmental area. Interestingly, the expression of FA1/dlk1 significantly increased in tyrosine hydroxylase (TH)-ir cells during early postnatal development. Co-localization and tracing studies demonstrated that FA1/dlk1-ir cells in the SNc were nigrostriatal dopaminergic neurons, and unilateral 6-OHDA lesions resulted in loss of both FA1/dlk1-ir and TH-ir cells in the SNc. Surprisingly, increased numbers of FA1/dlk1-ir cells (by 70%) were detected in dopamine-depleted striata as compared to unlesioned controls. The higher number of FA1/dlk1-ir cells was likely not due to neurogenesis as colocalization studies for proliferation markers were negative. This suggests that FA1/dlk1 was up-regulated in intrinsic cells in response to the 6-OHDA-mediated loss of FA1/dlk1-expressing SNc dopaminergic neurons and/or due to the stab wound. Our findings hint to a significant role of FA1/dlk1 in the SNc during early postnatal development. The differential expression of FA1/dlk1 in the SNc and the striatum of dopamine-depleted rats could indicate a potential involvement of FA1/dlk1 in the cellular response to the degenerative processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The myelin-associated protein Nogo-A is among the most potent neurite growth inhibitors in the adult CNS. Recently, Nogo-A expression was demonstrated in a number of neuronal subpopulations of the adult and developing CNS but at present, little is known about the expression of Nogo-A in the nigrostriatal system, a brain structure severely affected in Parkinson's disease (PD). The present study sought to characterize the expression pattern of Nogo-A immunoreactive (ir) cells in the adult ventral mesencephalon of control rats and in the 6-hydroxydopamine (6-OHDA) rat model of PD. Immunohistochemical analyses of normal adult rat brain showed a distinct expression of Nogo-A in the ventral mesencephalon, with the highest level in the substantia nigra pars compacta (SNc) where it co-localized with dopaminergic neurons. Analyses conducted 1week and 1 month after unilateral striatal injections of 6-OHDA disclosed a severe loss of the number of Nogo-A-ir cells in the SNc. Notably, at 1week after treatment, more dopaminergic neurons expressing Nogo-A were affected by the 6-OHDA toxicity than Nogo-A-negative dopaminergic neurons. However, at later time points more of the surviving dopaminergic neurons expressed Nogo-A. In the striatum, both small and large Nogo-A-positive cells were detected. The large cells were identified as cholinergic interneurons. Our results suggest yet unidentified functions of Nogo-A in the CNS beyond the inhibition of axonal regeneration and plasticity, and may indicate a role for Nogo-A in PD.