976 resultados para STRESS-CONCENTRATIONS
Resumo:
Studies in which ACTH was administrated in heifers after the occurrence of luteolysis showed a delay in the onset of estrus and the estrus duration was shortened. This study evaluated the effect of acute stress by road transportation on estrous behavior and ovulation, monitored by serum progesterone and cortisol concentrations in cows at the periovulatory period, using a crossover design. Eleven crossbred cows, divided into Control and Transport groups had their estrus cycle synchronized with GnRH, an intravaginal progesterone device, and cloprostenol. Thirty hours after withdrawal of the device, the animals of the Transport group were transported for 60 min by truck and those from the Control group remained at pasture. Ovarian ultrasound examination was performed every 12 h from device withdrawal until ovulation in every cow. From the day after removal of the device until ovulation estrous behavior was monitored 24 h a day. Blood samples for serum cortisol and progesterone concentrations were taken at -90, -60, 0, 30, 60 and 180 min in relation to the end of transportation. Transportation during the estrous period induced stress in cows as reflected by changes in serum concentrations of progesterone and cortisol. However, we did not detect impairment in estrus expression, estrus duration or ovulation (P>0.05). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Oxidative stress is a physiological condition that is associated with atherosclerosis. and it can be influenced by diet. Our objective was to group fifty-seven individuals with dyslipidaemia controlled by statins according to four oxidative biomarkers, and to evaluate the diet pattern and blood biochemistry differences between these groups. Blood samples were collected and the following parameters were evaluated: diet intake; plasma fatty acids; lipoprotein concentration; glucose; oxidised LDL (oxLDL); malondialdehyde (MDA): total antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing ability power assays. Individuals were separated into five groups by cluster analysis. All groups showed a difference with respect to at least one of the four oxidative stress biomarkers. The separation of individuals in the first axis was based upon their total antioxidant activity. Clusters located on the right side showed higher total antioxidant activity, higher myristic fatty acid and lower arachidonic fatty acid proportions than clusters located on the left side. A negative correlation was observed between DPPH and the peroxidability index. The second axis showed differences in oxidation status as measured by MDA and oxLDL concentrations. Clusters located on the Upper side showed higher oxidative status and lower HDL cholesterol concentration than clusters located on the lower side. There were no differences in diet among the five clusters. Therefore, fatty acid synthesis and HDL cholesterol concentration seem to exert a more significant effect on the oxidative conditions of the individuals with dyslipidaemia controlled by statins than does their food intake.
Resumo:
Aim of the study was to find out whether consumption of quercetin (QC), an abundant flavonoid in the human diet, protects against DNA damage caused by exposure to organic mercury. Therefore, rats were treated orally with methylmercury (MeHg) and the flavonoid with doses that reflect the human exposure. The animals received MeHg (30 mu g/kg/bw/day), QC (0.5-50 mg/kg/bw/day), or combinations of both over 45 days. Subsequently, the glutathione levels (GSH) and the activities of glutathione peroxidase (GPx) and catalase (CAT) were determined, and DNA damage was measured in hepatocytes and peripheral leukocytes in single cell gel electrophoresis assays. MeHg decreased the concentration of GSH and the activity of GPx by 17 and 12%, respectively and caused DNA damage to liver and blood cells, while with QC no such effects were seen. When the flavonoid was given in combination with MeHg, the intermediate and the highest concentrations (5.0 and 50.0 mg/kg/bw/day) were found to cause DNA protection; DNA migration was reduced by 54 and 65% in the hepatocytes and by 27 and 36% in the leukocytes; furthermore, the reduction in GSH and GPx levels caused by MeHg treatment was restored. In summary, our results indicate that consumption of QC-rich foods may protect Hg-exposed humans against the adverse health effects of the metal.
Resumo:
Sodium cyanide is being used on reefs in the Asia-Pacific region to capture live fish for the aquarium industry, and to supply a rapidly growing, restaurant-based demand, The effects of cyanide on reef biota have not been fully explored. To investigate its effect on hard corals, we exposed small branch lips of Stylophora pistillata and Acropora aspera to cyanide concentrations estimated to occur during cyanide fishing. Pulse amplitude modulation (PAM) chlorophyll fluorescence techniques were used to examine photoinhibition and photosynthetic electron transport in the symbiotic algae (zooxanthellae) in the tissues of the corals, These measurements were made in situ and in real time using a recently developed submersible PAM fluorometer. In S. pistillata. exposure to cyanide resulted in an almost complete cessation in photosynthetic electron transport rate. Both species displayed marked decreases in the ratio of variable fluorescence (F-v) to maximal fluorescence (F-m) (dark-adapted F-v/F-m), following exposure to cyanide, signifying a decrease in photochemical efficiency. Dark-adapted F-v/F-m recovered to normal levels in similar to 6 d, although intense tissue discolouration, a phenomenon well-recognised as coral 'bleaching' was observed during this period, Bleaching was caused by loss of zooxanthellae from the coral tissues, a well-recognised sub-lethal stress response of corals. Using the technique of chlorophyll fluorescence quenching analysis, corals exposed to cyanide did not show light activation of Calvin cycle enzymes and developed high levels of non-photochemical quenching (q(N)), signifying the photoprotective dissipation of excess light as heat, These features are symptomatic of the known properties of cyanide as an inhibitor of enzymes of the Calvin cycle. The results of this in situ study show that an impairment of zooxanthellar photosynthesis is; the site of cyanide-mediated toxicity, and is the cue that causes corals to release their symbiotic zooxanthellac following cyanide exposure. This study demonstrates the efficacy of PBM fluorometry as a new tool for in situ stress assessment in zooxanthellate scleractinian corals. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Little is known about the responses of Australian plants to excess metal, including Mn. It is important to remedy this lack of information so that knowledgeable decisions can be made about managing Mn contaminated sites where inhabited by Australian vegetation. Acacia holosericea, Melaleuca leucadendra, Eucalyptus crebra and Eucalyptus camaldulensis were grown in dilute solution culture for 10 weeks. The seedlings ( 42 days old) were exposed to six Mn treatments viz., 1, 8, 32, 128, 512 and 2048 muM. The order of tolerance to toxic concentrations of Mn was A. holosericea congruent to = E. crebra < M. leucadendra < E. camaldulensis, the critical external concentrations being approximately 5.1, 5.0, 21 and 330 muM, respectively. The critical tissue Mn concentrations for the youngest fully expanded leaf and total shoots were, respectively, 265 and 215 mug g(-1) DM for A. holosericea, 445 and 495 mug g(-1) DM for M. leucadendra, 495 and 710 mug g(-1) DM for E. crebra and 7230 and 6510 mug g(-1) DM for E. camaldulensis. The high tolerance of E. camaldulensis ( as opposed to the sensitivity of E. crebra) to excess Mn raises concern about fauna feeding on the plant and is consistent with hypotheses suggesting the Eucalyptus subgenus Symphomyrtus is particularly tolerant of stress, including excess Mn. The results from this paper provide the first comprehensive combination of growth responses, critical external concentrations, critical tissue concentrations and plant toxicity symptoms for three important Australian genera, viz., Eucalyptus, Acacia and Melaleuca, for use in the management of Mn toxic sites.
Resumo:
The aim of this study was to investigate the effect of supplementation of vitamin E, vitamin C, and zinc on the oxidative stress in burned children. In a prospective double-blind placebo-controlled pilot study, 32 patients were randomized as no supplementation (n = 15) or antioxidant supplementation (n = 17) groups. Supplementation consisted of the antioxidant mixture of vitamin C (1.5 times upper intake level), vitamin E (1.35 times upper intake level), and zinc (2.0 times recommended dietary allowance) administered during 7 days starting on the second day of admittance into the hospital. Energy requirement was calculated by the Curreri equation, and protein input was 3.0 g/kg of ideal body mass index (percentile 50 degrees). Total antioxidant capacity of plasma and malondialdehyde were used to monitor oxidative stress. The time of wound healing was evaluated as the main clinical feature. Patients (age 54.2 +/- 48.9 months, 65.6% males), who exhibited 15.5 +/- 6.7% of total burn area, showed no differences in age and sex, when compared with controls. Intake of the administered antioxidants was obviously higher in treated subjects (P = .005), and serum differences were confirmed for vitamin E and C, but not for zinc (P = .180). There was a decrease in lipid peroxidation (malondialdehyde level) (P = .006) and an increase in vitamin E concentrations in the antioxidant supplementation group (P = .016). The time of wound healing was lower in the supplemented group (P < .001). The antioxidant supplementation through vitamin E and C and the mineral zinc apparently enhanced antioxidant protection against oxidative stress and allowed less time for wound healing. (J Burn Care Res 2009;30:859-866)
Resumo:
BACKGROUND Spontaneously hypertensive rats (SHRs) show increased cardiac sympathetic activity, which could stimulate cardiomyocyte hypertrophy, cardiac damage, and apoptosis. Norepinephrine (NE)induced cardiac oxidative stress seems to be involved in SHR cardiac hypertrophy development. Because exercise training (ET) decreases sympathetic activation and oxidative stress, it may alter cardiac hypertrophy in SHR. The aim of this study was to determine, in vivo, whether ET alters cardiac sympathetic modulation on cardiovascular system and whether a correlation exists between cardiac oxidative stress and hypertrophy. METHODS Male SHRs (15-weeks old) were divided into sedentary hypertensive (SHR, n = 7) and exercise-trained hypertensive rats (SHR-T, n = 7). Moderate ET was performed on a treadmill (5 days/week, 60 min, 10 weeks). After ET, cardiopulmonary reflex responses were assessed by bolus injections of 5-HT. Autoregressive spectral estimation was performed for systolic arterial pressure (SAP) with oscillatory components quantified as low (LF: 0.2-0.75 Hz) and high (HF:0.75-4.0 Hz) frequency ranges. Cardiac NE concentration, lipid peroxidation, antioxidant enzymes activities, and total nitrates/nitrites were determined. RESULTS ET reduced mean arterial pressure, SAP variability (SAP var), LIF of SAP, and cardiac hypertrophy and increased cardiopulmonary reflex responses. Cardiac lipid peroxidation was decreased in trained SHRs and positively correlated with NE concentrations (r= 0.89, P < 0.01) and heart weight/body weight ratio (r= 0.72, P < 0.01), and inversely correlated with total nitrates/nitrites (r= -0.79, P < 0.01). Moreover, in trained SHR, cardiac total nitrates/nitrites were inversely correlated with NE concentrations (r= -0.82, P < 0.01). CONCLUSIONS ET attenuates cardiac sympathetic modulation and cardiac hypertrophy, which were associated with reduced oxidative stress and increased nitric oxide (NO) bioavailability. Am J Hypertens 2008;21:1138-1193 (C) 2008 American Journal of Hypertension, Ltd.
Resumo:
Objective: We subjected mice to acute cold stress and studied the effect on phagocytosis by peritoneal macrophages mediated by 3 types of phagocytic receptors: Fc gamma, complement receptors 3 (CR3) and mannose and beta-glucan receptors. Methods: Mice were subjected to a cold stress condition (4 C for 4 h), and then peritoneal macrophages were harvested and phagocytosis assays performed in vitro. Results: We found a striking difference between resting and lipopolysaccharide (LPS)-activated macrophages (by intraperitoneal injection of LPS 4 days before the stress experiment): for resting macrophages cold stress caused a decrease in phagocytosis mediated by Fc gamma or mannose receptors, while for activated macrophages we observed an increase in phagocytosis by the 3 types of receptors. These effects were associated with an increase in plasma concentrations of corticosterone and catecholamines following the cold stress. In order to verify whether these hormone changes could account for the observed effects on phagocytosis, we performed in vitro assays by incubating macrophages harvested from nonstressed animals with these hormones for 4 h at 37 degrees C and measuring their phagocytic capacity. The following experiments were done: (a) with resting (nonactivated) macrophages; (b) with macrophages previously activated in vitro by incubation with LPS; (c) with macrophages previously activated in vivo by intraperitoneal injection of mice with LPS, 4 days before harvesting the cells. We found that for resting macrophages, corticosterone decreased phagocytosis mediated by Fc gamma and mannose and beta-glucan receptors, but catecholamines had no effect. For macrophages activated either in vivo or in vitro, catecholamines caused an increase in phagocytosis (excluding mannose receptors) while corticosterone had no effect. Conclusion: The above findings suggest that stress can regulate phagocytosis in different ways, depending on the kind of phagocytic receptor involved, the level of stress hormones and the physiological state of the macrophages. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Background and Aims: Stress can alter many aspects of the immune response, and many studies have been conducted on the effects of stress on inflammatory processes, but little is known about its influence on the resolution of inflammation in tissue homeostasis, which includes the clearance of apoptotic cells by macrophages in a non-phlogistic way. In the present study, we investigated the effect of acute cold stress on the phagocytosis of apoptotic cells by macrophages. Methods: Mice were submitted to acute cold stress (4 degrees C for 4 h) and the capacity of peritoneal macrophages to phagocyte apoptotic thymocytes and to secrete anti-inflammatory cytokines was evaluated. Plasma corticosterone and catecholamine levels were investigated to assess their effect on the phagocytic capacity of macrophages in vitro. Results: We showed that acute cold stress decreases phagocytosis of apoptotic cells at the inflammatory site by lipopolysaccharide-activated macrophages but did not affect resting macrophages. The inhibitory effect on phagocytosis is accompanied by a reduced level of TGF-beta and higher IL-10 secretion. After stress, plasma concentrations of corticosterone increased 6-fold, epinephrine 2-fold and norepinephrine 1.7-fold compared to control mice. In vitro experiments showed that the decrease in phagocytosis after stress could be attributed, at least in part, to the effects of corticosterone; epinephrine and norepinephrine had no effect. Conclusions: The current study shows that acute cold stress decreases phagocytosis of apoptotic cells from an inflammatory environment by macrophages, and this inhibition is mediated by the intracellular glucocorticoid receptor. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
This study examined the effect of weight loss on energy intake, vitamin C, E, beta-carotene (diet/blood), reduced glutathione (GSH), C-reactive protein (CRP), thiobarbituric acid reactive substances (TBARS), catalase, and myeloperoxidase, in patients with Roux-en-Y bypass gastroplasty. Prospective clinical study with control (C) and bariatric (B) groups (n = 20 each). Age was 38.8 +/- 11.1 (C) and 37.8 +/- 11.2 years (B), and body mass indices (BMI) were 22.4 +/- 2.4 and 48.1 +/- 8.7 kg/m(2), respectively. Group C was assessed on a single occasion and B at three time points (basal period and 3 and 6 months after gastroplasty). BMI was decreased at three (38.3 +/- 1.7, P = 0.018) and 6 months after surgery (34.9 +/- 1.7, P < 0.001). Mean weight loss was 20.53 +/- 1.1 after three and 27.96 +/- 1.3 kg after 6 months. Serum vitamin C and beta-carotene (P < 0.01 and P < 0.001, respectively) were increased at 6 months compared to basal. Basal serum vitamin C (P = 0.001) and beta-carotene (P < 0.001) were lower compared to controls. Serum vitamin E corrected for cholesterol and triglycerides was higher in group B at three (P = 0.01) and 6 months (P = 0.001) and lower at basal (P < 0.001) compared to controls. GSH was higher in controls (P < 0.001) compared to basal. Catalase (P = 0.01) and TBARS (P < 0.001) were higher in group B at 6 months. TBARS were higher (P < 0.001) at basal compared to controls. Myeloperoxidase and CRP decreased in group B after three (P = 0.028, P = 0.010) and 6 months (P < 0.001, P = 0.001), respectively. Roux-en-Y bypass gastroplasty led to decreased proinflammatory parameters together with increased nutritional antioxidants, catalase, and TBARS, and decreased GSH 6 months after surgery.
Resumo:
Metabolic syndrome (MetS) denotes a clustering of risk factors that may affect nitric oxide (NO) bioavailability and predispose to cardiovascular diseases, which are delayed by exercise training. However, no previous study has examined how MetS affects markers of NO formation, and whether exercise training increases NO formation in MetS patients. Here, we tested these two hypotheses. We studied 48 sedentary individuals: 20 healthy controls and 28 MetS patients. Eighteen MetS patients were subjected to a 3-month exercise training (E+group), while the remaining 10 MetS patients remained sedentary (E-group). The plasma concentrations of nitrite, cGMP, and ADMA (asymmetrical dimethylarginine: an endogenous nitric oxide synthase inhibitor), and the whole blood nitrite concentrations were determined at baseline and after exercise training using an ozone-based chemiluminescence assay, and commercial enzyme immunoassays. Thiobarbituric acid reactive species (TBA-RS) were measured in the plasma to assess oxidative stress using a fluorometric method. We found that, compared with healthy subjects, patients with MetS have lower concentrations of markers of NO formation, including whole blood nitrite, plasma nitrite, and plasma cGMP, and increased oxidative stress (all P < 0.05). Exercise training increased the concentrations of whole blood nitrite and cGMP, and decreased both oxidative stress and the circulating concentrations of ADMA (both P < 0.05). These findings show clinical evidence for lower endogenous NO formation in patients with MetS, and for improvements in NO formation associated with exercise training in MetS patients. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background: Making the diagnosis of acute pulmonary thromboembolism (APT) and assessing its severity is very challenging, While cardiac troponin I (cTnI) concentrations are promising in risk stratification, no previous study has examined whether there is a linear relation between cTnI concentrations and the severity of APT. Moreover, matrix metalloprotemases (MMPs) are involved in the pathophysiology of APT. However, it is unknown whether the increases in MMP concentrations after APT reflect the severity of this condition. We examined whether the circulating concentrations of these biomarkers increase in proportion to the severity of experimental APT induced in anesthetized dogs. Methods: APT was induced with autologous blood clots (saline, 1, 3, or 5 ml/kg) injected into the right atrium. Hemodynamic evaluations were carried out for 120 min. Gelatin zymography of MMP-2 and MMP-9 from plasma samples were performed and serum cTnI concentrations were determined at baseline and 120 min after APT. Results: While no significant increases in pro-MMP-2 concentrations were found after APT, pro-MMP-9 concentrations increased by 80% only after 5 ml/kg of clot embolization. Serum cTnI and plasma pro-MMP-9 concentrations correlated positively with pulmonary vascular resistance (P=0.007 and rs=0.833 for troponin 1, and P=0.034 and rs=0.684 for pro-MMP-9) and with pulmonary artery pressure (P=0.005 and rs=0.610 for troponin 1, and P=0.022 and rs=0.720 for pro-MMP-9). Conclusions: Circulating cTnI and pro-MMP-9 increase in proportion to the severity of APT, although the increases in plasma pro-MMP-9 are less clear with less severe APT. These findings may be relevant for clinical APT. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Study objective: To compare the effects of ethinylestradiol (EE) and 17 beta-estradiol (E(2)) on nitric oxide (NO) production and protection against oxidative stress in human endothelial cell cultures. Design: Experimental study. Settings: Research laboratory. Material: Human ECV304 endothelial cell cultures. Intervention(s): The NO synthesis was determined by flow cytometry, and oxidative stress was determined by a cell viability assay, after exposure to hydrogen peroxide (H(2)O(2)) and stimulation of endothelial cells with EE at concentrations similar to those of a contraceptive containing 30 mu g EE. Main Outcome Measure(s): The effects of EE were compared with those of E(2) at concentrations similar to those occurring during the follicular phase. Result(s): Ethinylestradiol did not increase NO synthesis and did not protect cells against oxidative stress. The viability of the cells incubated with E(2) in combination with H(2)O(2) was greater than the viability obtained with H(2)O(2) only or with H(2)O(2) in combination with EE. The cells stimulated with E(2) presented a significant increase in NO production compared with control. Conclusion(s): In contrast to the effects of E(2), EE did not protect human ECV304 endothelial cells against oxidative stress and did not increase their production of NO. (Fertil Steril (R) 2010; 94: 1578-82. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
Background and purpose: Calendula officinalis flowers have long been employed time in folk therapy, and more than 35 properties have been attributed to decoctions and tinctures from the flowers. The main uses are as remedies for burns (including sunburns), bruises and cutaneous and internal inflammatory diseases of several origins. The recommended doses are a function both of the type and severity of the condition to be treated and the individual condition of each patient. Therefore, the present study investigated the potential use of Calendula officinalis extract to prevent UV irradiation-induced oxidative stress in skin. Methods: Firstly, the physico-chemical composition of marigold extract(ME) (hydroalcoholic extract)was assessed and the in vitro antioxidant efficacy was determined using different methodologies. Secondly, the cytotoxicity was evaluated in L929 and HepG2 cells with the MTT assay. Finally, the in vivo protective effect of ME against UVB-induced oxidative stress in the skin of hairless mice was evaluated by determining reduced glutathione (GSH) levels and monitoring the secretion/activity of metalloproteinases. Results and conclusions: The polyphenol, flavonoid, rutin and narcissin contents found in ME were 28.6 mg/g, 18.8 mg/g, 1.6 mg/g and 12.2 mg/g, respectively and evaluation of the in vitro antioxidant activity demonstrated a dose-dependent effect of ME against different radicals. Cytoxicity experiments demonstrated that ME was not cytotoxic for L929 and HepG2 cells at concentrations less than or equal to of 15 mg/mL However, concentrations greater than or equal to 30 mg/mL, toxic effects were observed. Finally, oral treatment of hairless mice with 150 and 300 mg/kg of ME maintained GSH levels close to non-irradiated control mice. In addition, this extract affects the activity/secretion of matrix metalloproteinases 2 and 9 (MMP-2 and -9) stimulated by exposure to UVB irradiation. However, additional studies are required to have a complete understanding of the protective effects of ME for skin. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Introduction: Inhibition of matrix metalloproteinases (MMPs) improves the hemodynamics during acute pulmonary embolism (APE) and oxidative stress upregulates MMPs. We compared the effects of different NO-cGMP pathway activators on APE-induced increases in MMPs. Materials and Methods: Hemodynamic and biochemical evaluations were performed in non-embolized dogs treated with saline (N = 5), and in microspheres embolized dogs receiving saline (n = 9), or nitrite (6.75 mu mol/kg i.v. over 15 min followed by 0.28 mu mol/kg/min; n = 5), or sildenafil (0.25 mg/kg; n = 5), or BAY 41-2272 (0.03, 0.1, 0.3, and 1 mg/kg/h; n = 5). Plasma thiobarbituric acid reactive substances (TBARS) concentrations were determined. Zymograms of plasma samples were performed, and in vitro antioxidant effects or inhibition of MMPs by these drugs were examined. Results: APE increased mean pulmonary artery pressure by similar to 25 mmHg. Nitrite, BAY 41-2272, or sildenafil reversed this increase by similar to 40% (P < 0.05). Similar effects were seen on the pulmonary vascular resistance. While both nitrite and sildenafil produced no systemic effects, the highest dose of BAY 41-2272 produced systemic hypotension (P<0.05). While nitrite and sildenafil blunted the increases in plasma pro-MMP-9 levels and TBARS (all P < 0.05), BAY 41-2272 produced no such effects. Nitrite and sildenafll produced in vitro antioxidant effects and inhibited MMPs only at high concentrations. BAY 41-2272 produced no such effects. Conclusions: Activation of the NO-cGMP pathway with nitrite or sildenafil, but not with BAY 41-2272, attenuates APE-induced oxidative stress and increased MMP-9 levels. These findings are consistent with the idea that NO-cGMP pathway activators with antioxidant effects prevent the release of MMP-9 during APE. (c) 2008 Elsevier Ltd. All rights reserved.