860 resultados para STAGE RENAL-DISEASE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ~2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P?=?1.2×10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P?=?2.0×10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-ß1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P?=?2.1×10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased plasma levels of cellular adhesion molecules (CAMs) have been shown to be predictors of all cause mortality in individuals with chronic renal failure 12 and patients with end-stage renal disease receiving haemodialysis 3. In renal transplant recipients the predictive value of CAMs has not been well characterised. The aim of this study was to assess the relationship between CAMs and all-cause mortality during prospective follow-up of a renal transplant cohort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IgA nephropathy (IgAN) is a frequent cause of end-stage renal disease (ESRD) and recurrent disease causes deterioration and graft loss in transplant recipients. No definitive management is known to reduce the risk or severity of recurrent IgAN, and the evidence to support the use of renin-angiotensin system blockade in such patients is limited.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inherited disorders of renal structure and function are relatively common causes of end-stage renal disease requiring renal replacement therapy. A family history of haematuria, urinary tract infection or renal failure can alert the clinician to the possible diagnosis of underlying renal genetic abnormalities. In practice, the commonest inherited renal disorder is autosomal dominant polycystic kidney disease (ADPKD), characterized by multiple kidney cysts associated with hypertension and renal failure. Insights into the cell biology of ADPKD are informing new therapeutic approaches to limit cyst growth and prevent progressive renal failure. Non-visible haematuria is a clinical finding that presents a diagnostic challenge because it has so many possible causes. Mutations in the genes encoding collagen proteins within the glomerular basement membrane (GBM) can disrupt its normal barrier function. Thin basement membrane nephropathy, caused by GBM collagen gene mutations, is a relatively common cause of familial haematuria that normally has a good long-term prognosis. Alport syndrome is a rare and genetically heterogeneous condition leading to renal failure in men inheriting the X-linked gene defect. Single-gene defects may cause diverse renal tubular disorders, such as predisposition to renal calculi, diabetes insipidus, renal tubular acidosis or hypertension with associated electrolyte imbalance. Gene mutations responsible for familial renal cancer syndromes, such as tuberous sclerosis complex and von Hippel–Lindau disease, have also been identified

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS:

A previous study in Dutch dialysis patients showed no survival difference between patients with diabetes as primary renal disease and those with diabetes as a co-morbid condition. As this was not in line with our hypothesis, we aimed to verify these results in a larger international cohort of dialysis patients.

METHODS:

For the present prospective study, we used data from the European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Registry. Incident dialysis patients with data on co-morbidities (n?=?15,419) were monitored until kidney transplantation, death or end of the study period (5 years). Cox regression was performed to compare survival for patients with diabetes as primary renal disease, patients with diabetes as a co-morbid condition and non-diabetic patients.

RESULTS:

Of the study population, 3,624 patients (24%) had diabetes as primary renal disease and 1,193 (11%) had diabetes as a co-morbid condition whereas the majority had no diabetes (n?=?10,602). During follow-up, 7,584 (49%) patients died. In both groups of diabetic patients mortality was higher compared with the non-diabetic patients. Mortality was higher in patients with diabetes as primary renal disease than in patients with diabetes as a co-morbid condition, adjusted for age, sex, country and malignancy (HR 1.20, 95% CI 1.10, 1.30). An analysis stratified by dialysis modality yielded similar results.

CONCLUSIONS/INTERPRETATION:

Overall mortality was significantly higher in patients with diabetes as primary renal disease compared with those with diabetes as a co-morbid condition. This suggests that survival in diabetic dialysis patients is affected by the extent to which diabetes has induced organ damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research investigates the relationship between elevated trace elements in soils, stream sediments and stream water and the prevalence of Chronic Kidney Disease (CKD). The study uses a collaboration of datasets provided from the UK Renal Registry Report (UKRR) on patients with renal diseases requiring treatment including Renal Replacement Therapy (RRT), the soil geochemical dataset for Northern Ireland provided by the Tellus Survey, Geological Survey of Northern Ireland (GSNI) and the bioaccessibility of Potentially Toxic Elements (PTEs) from soil samples which were obtained from the Unified Barge Method (UBM). The relationship between these factors derives from the UKRR report which highlights incidence rates of renal impaired patients showing regional variation with cases of unknown aetiology. Studies suggest a potential cause of the large variation and uncertain aetiology is associated with underlying environmental factors such as the oral bioaccessibility of trace elements in the gastrointestinal tract.
As previous research indicates that long term exposure is related to environmental factors, Northern Ireland is ideally placed for this research as people traditionally live in the same location for long periods of time. Exploratory data analysis and multivariate analyses are used to examine the soil, stream sediments and stream water geochemistry data for a range of key elements including arsenic, lead, cadmium and mercury identified from a review of previous renal disease literature. The spatial prevalence of patients with long term CKD is analysed on an area basis. Further work includes cluster analysis to detect areas of low or high incidences of CKD that are significantly correlated in space, Geographical Weighted Regression (GWR) and Poisson kriging to examine locally varying relationship between elevated concentrations of PTEs and the prevalence of CKD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kidneys are highly aerobic organs that are critically dependent on the normal functioning of mitochondria. Genetic variations disrupting mitochondrial function are associated with multifactorial disorders including kidney disease. This study sequenced the entire mitochondrial genome in a renal transplant cohort of 64 individuals, using next-generation sequencing, to evaluate the association of genetic variants with IgA nephropathy and end-stage renal disease (ESRD, n = 100).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To evaluate the association with diabetic kidney disease of single nucleotide polymorphisms (SNPs) that may contribute to mitochondrial dysfunction.

METHODS: The mitochondrial genome and 1039 nuclear genes that are integral to mitochondrial function were investigated using a case (n=823 individuals with diabetic kidney disease) vs. control (n=903 individuals with diabetes and no renal disease) approach. All people included in the analysis were of white European origin and were diagnosed with Type 1 diabetes before the age of 31 years. Replication was conducted in 5093 people with similar phenotypes to those of the discovery collection. Association analyses were performed using the plink genetic analysis toolset, with adjustment for relevant covariates.

RESULTS: A total of 25 SNPs were evaluated in the mitochondrial genome, but none were significantly associated with diabetic kidney disease or end-stage renal disease. A total of 38 SNPs in nuclear genes influencing mitochondrial function were nominally associated with diabetic kidney disease and 16 SNPS were associated with end-stage renal disease, secondary to diabetic kidney disease, with meta-analyses confirming the same direction of effect. Three independent signals (seven SNPs) were common to the replication data for both phenotypes with Type 1 diabetes and persistent proteinuria or end-stage renal disease.

CONCLUSIONS: Our results suggest that SNPs in nuclear genes that influence mitochondrial function are significantly associated with diabetic kidney disease in a white European population

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: Epigenetic modifications, such as DNA methylation, can influence the risk of developing kidney disease. We studied methylation profiles in genes related to mitochondrial function to assess whether differences in these epigenetic features were associated with diabetic kidney disease in people with Type 1 diabetes.

METHODS: A case-control association study was undertaken (n = 196 individuals with diabetic kidney disease vs. n = 246 individuals without renal disease). Participants were White and diagnosed with Type 1 diabetes before 31 years of age. Genes that encode mitochondrial proteins (n = 780) were downloaded from mitoproteome. org. DNA methylation profiles from blood-derived DNA were generated using the Illumina Infinium HumanMethylation450 (262 samples) and Illumina Infinium HumanMethylation27 (192 samples) arrays. Beta values (β) were calculated and quality control was conducted, including evaluating blind duplicate DNA samples.

RESULTS: Fifty-four Cytosine-phosphate-Guanine probes across 51 unique genes were significantly associated (P ≤ 10(-8) ) with diabetic kidney disease across both the 450K and the 27K methylation arrays. A subanalysis, employing the 450K array, identified 755 Cytosine-phosphate-Guanine probes in 374 genes that were significantly associated (P ≤ 10(-8) ) with end-stage renal disease. Forty-six of the top-ranked variants for diabetic kidney disease were also identified as being differentially methylated in individuals with end-stage renal disease. The largest change in methylation (Δβ = 0.2) was observed for cg03169527 in the TAMM41 gene, chromosome 3p25.2. Three genes, PMPCB, TSFM and AUH, were observed with differential methylation at multiple Cytosine-phosphate-Guanine sites each (P < 10(-12) ).

CONCLUSIONS: Differential methylation in genes that influence mitochondrial function are associated with kidney disease in individuals with Type 1 diabetes. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity has been posited as an independent risk factor for diabetic kidney disease (DKD), but establishing causality from observational data is problematic. We aimed to test whether obesity is causally related to DKD using Mendelian randomization, which exploits the random assortment of genes during meiosis. In 6,049 subjects with type 1 diabetes, we used a weighted genetic risk score (GRS) comprised of 32 validated BMI loci as an instrument to test the relationship of BMI with macroalbuminuria, end-stage renal disease (ESRD), or DKD defined as presence of macroalbuminuria or ESRD. We compared these results with cross-sectional and longitudinal observational associations. Longitudinal analysis demonstrated a U-shaped relationship of BMI with development of macroalbuminuria, ESRD, or DKD over time. Cross-sectional observational analysis showed no association with overall DKD, higher odds of macroalbuminuria (for every 1 kg/m(2) higher BMI, odds ratio [OR] 1.05, 95% CI 1.03-1.07, P < 0.001), and lower odds of ESRD (OR 0.95, 95% CI 0.93-0.97, P < 0.001). Mendelian randomization analysis showed a 1 kg/m(2) higher BMI conferring an increased risk in macroalbuminuria (OR 1.28, 95% CI 1.11-1.45, P = 0.001), ESRD (OR 1.43, 95% CI 1.20-1.72, P < 0.001), and DKD (OR 1.33, 95% CI 1.17-1.51, P < 0.001). Our results provide genetic evidence for a causal link between obesity and DKD in type 1 diabetes. As obesity prevalence rises, this finding predicts an increase in DKD prevalence unless intervention should occur.