187 resultados para SPLINES
Resumo:
In addition to classical methods, namely kriging, Inverse Distance Weighting (IDW) and splines, which have been frequently used for interpolating the spatial patterns of soil properties, a relatively more accurate surface modelling technique is being developed in recent years, namely high accuracy surface modelling (HASM). It has been used in the numerical tests, DEM construction and the interpolation of climate and ecosystem changes. In this paper, HASM was applied to interpolate soil pH for assessing its feasibility of soil property interpolation in a red soil region of Jiangxi Province, China. Soil pH was measured on 150 samples of topsoil (0-20 cm) for the interpolation and comparing the performance of HASM, kriging. IDW and splines. The mean errors (MEs) of interpolations indicate little bias of interpolation for soil pH by the four techniques. HASM has less mean absolute error (MAE) and root mean square error (RMSE) than kriging, IDW and splines. HASM is still the most accurate one when we use the mean rank and the standard deviation of the ranks to avoid the outlier effects in assessing the prediction performance of the four methods. Therefore, HASM can be considered as an alternative and accurate method for interpolating soil properties. Further researches of HASM are needed to combine HASM with ancillary variables to improve the interpolation performance and develop a user-friendly algorithm that can be implemented in a GIS package. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, an introduction of wavelet transform and multi-resolution analysis is presented. We describe three data compression methods based on wavelet transform for spectral information,and by using the multi-resolution analysis, we compressed spectral data by Daubechies's compactly supported orthogonal wavelet and orthogonal cubic B-splines wavelet, Using orthogonal cubic B-splines wavelet and coefficients of sharpening signal are set to zero, only very few large coefficients are stored, and a favourable data compression can be achieved.
Resumo:
基于超冗余度机械臂的动力学方程 ,提出了一种超冗余度机械臂同时受速度和力矩约束的时间最优轨迹规划方法 .它首先采用 B样条曲线拟合无碰撞离散路径 ,得到由伪位移参数 s表示的超冗余度机械臂连续、光滑运动路径 ,然后对动力学方程和约束方程进行数学变换 ,得到由 s表示的动力学方程和约束方程 ,最后以 s和伪速度 s· 分别作为动态规划的阶段变量和状态变量 ,对超冗余度机械臂进行时间最优轨迹规划 .仿真结果表明 ,所给出的时间最优轨迹规划算法是正确的 ,所采取的解决方法是可行的
Resumo:
Learning an input-output mapping from a set of examples, of the type that many neural networks have been constructed to perform, can be regarded as synthesizing an approximation of a multi-dimensional function, that is solving the problem of hypersurface reconstruction. From this point of view, this form of learning is closely related to classical approximation techniques, such as generalized splines and regularization theory. This paper considers the problems of an exact representation and, in more detail, of the approximation of linear and nolinear mappings in terms of simpler functions of fewer variables. Kolmogorov's theorem concerning the representation of functions of several variables in terms of functions of one variable turns out to be almost irrelevant in the context of networks for learning. We develop a theoretical framework for approximation based on regularization techniques that leads to a class of three-layer networks that we call Generalized Radial Basis Functions (GRBF), since they are mathematically related to the well-known Radial Basis Functions, mainly used for strict interpolation tasks. GRBF networks are not only equivalent to generalized splines, but are also closely related to pattern recognition methods such as Parzen windows and potential functions and to several neural network algorithms, such as Kanerva's associative memory, backpropagation and Kohonen's topology preserving map. They also have an interesting interpretation in terms of prototypes that are synthesized and optimally combined during the learning stage. The paper introduces several extensions and applications of the technique and discusses intriguing analogies with neurobiological data.
Resumo:
La evaluación genética para caracteres de crecimiento pre - destete requiere ajustar modelos animales con efectos maternos (MAM). Tanto la estimación paramétrica de la variabilidad como la evaluación genética mediante MAM son realizadas empleando datos de campo, muchos de los cuales no poseen información completa para todas las variables explicativas maternas. Es común no contar con la identificación de madres (biológicas y/o receptoras), de abuelas maternas y, consecuentemente, de la edad de la madre (EM). Este problema es bien marcado en razas compuestas como Brangus y Braford que tienen políticas para registrar animales de pedigrí "abierto". Además, no existe un consenso sobre cuál es el mejor modelo de predicción, y existen interrogantes sobre la magnitud de los componentes de (co) varianza genético-aditivos y ambientales del modelo de evaluación. La primera investigación de esta tesis consistió en la estimación, mediante métodos bayesianos de los parámetros de dispersión en MAMs con distintas estructuras de (co) varianza, para datos de peso al destete de animales Angus de pedigrí. El análisis se caracterizó por la originalidad en los muestreos de las distribuciones marginales posteriores de las covarianzas genéticas aditivas y de la correlación entre los efectos ambientales maternos permanentes de una vaca y sus hijas también madres. Con el objeto de especificar correctamente la fracción aditiva de las (co) varianzas cuando se desconocen las madres y/o abuelas maternas de los animales con datos, en otro capítulo se desarrollaron MAMs equivalentes que no requieren alargar los vectores de los valores de cría con madres o abuelas fantasmas. Finalmente, se desarrolló un modelo mixto que atenúa el sesgo por error de medición clásico en el efecto EM, e introduce splines penalizadas y una estructura de (co) variación autoregresiva de orden 1 para suavizar las covarianzas residuales Este modelo es apropiado para ajustar datos de animales nacidos por transplante embrionario con madres receptoras desconocidas
Resumo:
¿Cómo se logran esas bonitas y suaves curvas en la pantalla de un ordenador? Parece que fluyen suavemente y no tienen ese efecto desigual que sale si dibujas un montón de puntos y los unes con segmentos rectilíneos. La razón es que el software muestrea los dibujos y usa métodos de interpolación suave. A menudo, el método de interpolación es el llamado de los splines cúbicos, que aprovecha inteligentemente ciertos conceptos matemáticos corrientes, como mostraremos a continuación.
Resumo:
Este trabajo consta de dos partes: la primera presenta, de manera elemental, la teoría de los polinomios de Bernstein en una variable; la segunda esta dedicada a curvas de Bezier y q-trazadores ("q-splines"). Nos parece importante el uso que se puede dar del software Mathematica.
Resumo:
The use of B-spline basis sets in R-matrix theory for scattering processes has been investigated. In the present approach a B-spline basis is used for the description of the inner region, which is matched to the physical outgoing wavefunctions by the R-matrix. Using B-splines, continuum basis functions can be determined easily, while pseudostates can be included naturally. The accuracy for low-energy scattering processes is demonstrated by calculating inelastic scattering cross sections for e colliding on H. Very good agreement with other calculations has been obtained. Further extensions of the codes to quasi two-electron systems and general atoms are discussed as well as the application to (multi) photoionization.
Resumo:
An ab initio approach has been applied to study multiphoton detachment rates for the negative hydrogen ion in the lowest nonvanishing order of perturbation theory. The approach is based on the use of B splines allowing an accurate treatment of the electronic repulsion. Total detachment rates have been determined for two- to six-photon processes as well as partial rates for detachment into the different final symmetries. It is shown that B-spline expansions can yield accurate continuum and bound-state wave functions in a very simple manner. The calculated total rates for two- and three-photon detachment are in good agreement with other perturbative calculations. For more than three-photon detachment little information has been available before now. While the total cross sections show little structure, a fair amount of structure is predicted in the partial cross sections. In the two-photon process, it is shown that the detached electrons mainly have s character. For four- and six-photon processes, the contribution from the d channel is the most important. For three- and five-photon processes p electrons dominate the electron emission spectrum. Detachment rates for s and p electrons show minima as a function of photon energy. © 1994 The American Physical Society.
Resumo:
Identifying processes that shape species geographical ranges is a prerequisite for understanding environmental change. Currently, species distribution modelling methods do not offer credible statistical tests of the relative influence of climate factors and typically ignore other processes (e.g. biotic interactions and dispersal limitation). We use a hierarchical model fitted with Markov Chain Monte Carlo to combine ecologically plausible niche structures using regression splines to describe unimodal but potentially skewed response terms. We apply spatially explicit error terms that account for (and may help identify) missing variables. Using three example distributions of European bird species, we map model results to show sensitivity to change in each covariate. We show that the overall strength of climatic association differs between species and that each species has considerable spatial variation in both the strength of the climatic association and the sensitivity to climate change. Our methods are widely applicable to many species distribution modelling problems and enable accurate assessment of the statistical importance of biotic and abiotic influences on distributions.
Resumo:
1. The prediction and mapping of climate in areas between climate stations is of increasing importance in ecology.
2. Four categories of model, simple interpolation, thin plate splines, multiple linear regression and mixed spline-regression, were tested for their ability to predict the spatial distribution of temperature on the British mainland. The models were tested by external cross-verification.
3. The British distribution of mean daily temperature was predicted with the greatest accuracy by using a mixed model: a thin plate spline fitted to the surface of the country, after correction of the data by a selection from 16 independent topographical variables (such as altitude, distance from the sea, slope and topographic roughness), chosen by multiple regression from a digital terrain model (DTM) of the country.
4. The next most accurate method was a pure multiple regression model using the DTM. Both regression and thin plate spline models based on a few variables (latitude, longitude and altitude) only were comparatively unsatisfactory, but some rather simple methods of surface interpolation (such as bilinear interpolation after correction to sea level) gave moderately satisfactory results. Differences between the methods seemed to be dependent largely on their ability to model the effect of the sea on land temperatures.
5. Prediction of temperature by the best methods was greater than 95% accurate in all months of the year, as shown by the correlation between the predicted and actual values. The predicted temperatures were calculated at real altitudes, not subject to sea-level correction.
6. A minimum of just over 30 temperature recording stations would generate a satisfactory surface, provided the stations were well spaced.
7. Maps of mean daily temperature, using the best overall methods are provided; further important variables, such as continentality and length of growing season, were also mapped. Many of these are believed to be the first detailed representations at real altitude.
8. The interpolated monthly temperature surfaces are available on disk.
Resumo:
In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.
Resumo:
The design phase of B-spline neural networks is a highly computationally complex task. Existent heuristics have been found to be highly dependent on the initial conditions employed. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this paper, the Bacterial Programming approach is presented, which is based on the replication of the microbial evolution phenomenon. This technique produces an efficient topology search, obtaining additionally more consistent solutions.
Resumo:
Current and past research has brought up new views related to the optimization of neural networks. For a fixed structure, second order methods are seen as the most promising. From previous works we have shown how second order methods are of easy applicability to a neural network. Namely, we have proved how the Levenberg-Marquard possesses not only better convergence but how it can assure the convergence to a local minima. However, as any gradient-based method, the results obtained depend on the startup point. In this work, a reformulated Evolutionary algorithm - the Bacterial Programming for Levenberg-Marquardt is proposed, as an heuristic which can be used to determine the most suitable starting points, therefore achieving, in most cases, the global optimum.
Resumo:
The design of neuro-fuzzy models is still a complex problem, as it involves not only the determination of the model parameters, but also its structure. Of special importance is the incorporation of a priori information in the design process. In this paper two known design algorithms for B-spline models will be updated to account for function and derivatives equality restrictions, which are important when the neural model is used for performing single or multi-objective optimization on-line.