992 resultados para SOLID-SOLUTIONS
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Ferroelectric strontium barium niobate solid solutions had received great attention due to their excellent pyroelectric, electrooptic and photorefractive properties. Furthermore, they usually also present very interesting phase transition characteristics. In this work, polycrystalline single phase Sr 0.75 Ba 0.25 Nb 2 O 6 thin films were prepared by a hybrid chemical method and deposited on Pt/Ti/SiO 2 /Si substrates. The temperature dependence of dielectric constant was measured at different frequencies and bias field levels. The presence of two dielectric dispersion regions with relaxor characteristics was observed at distinct temperature ranges, corresponding to the ferro-paraelectric and to a structural phase transition at low temperatures, respectively. A specific dielectric dispersion region, associated with an incommensurate superstructure frequently observed in bulk samples, was not observed in this films probably due to their small grain sizes. © 2002 Taylor & Francis.
Resumo:
This paper presents a study of the influence of particle size on the structural and dielectric properties of Pb0.85La0.15TiO3 (PLT15) ferroelectric ceramic samples. The samples were prepared with average grain size of 1.69 +/- 0.08 mu m and 146 +/- 8 nm using, respectively, conventional and spark plasma sintering techniques. A decrease in the tetragonality degree as the crystallite size decreased was explained by an internal stress caused by the existence of a large amount of grain boundaries. The local structure exhibited no significant modification and the dielectric measurements showed a diffuse phase transition and a reduction in the permittivity magnitude at T-m as the average grain size decreased. The nanostructured ceramic sample prepared at a relatively lower temperature and sintering time presented a dielectric constant value of approximately 2000 at room temperature. (c) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Catalysts containing mixtures of NiO, MgO and ZrO2 were synthesized by the polymerization method. They were characterized by X-ray diffraction (XRD), physisorption of N-2 (BET), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES), and then tested in the partial oxidation of methane (POM) in the presence of air (2CH(4):1O(2)) at 750 degrees C for 6 h. Among the ternary oxides, the catalyst with 40 mol% MgO showed the highest conversion rates in the catalytic processes, but also the highest carbon deposition values (48 mmol h (1)). The greater the amount of NiO-MgO solid solution formed, the higher was the conversion rate of reactants (CH4), peaking at 40 mol% of MgO. Catalysts with lower Ni content on the surface achieved a high rate of CH4 conversion into synthesis gas (H-2 + CO). The formation of more NiO-MgO solid solution seemed to inhibit the deactivation of Ni degrees during reaction. The values of the H-2/CO product ratio were generally found to be slightly lower than stoichiometric. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Mixtures of 2-(4,5,6,7-tetrafluorobenzimidazol-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (F4BImNN) and 2-(benzi-midazol-2-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (BImNN.) crystallize as solid solutions (alloys) across a wide range of binary compositions. (F4BImNN)(x)(BImNN)((1-x)) with x < 0.8 gives orthorhombic unit cells, while x >= 0.9 gives monoclinic unit cells. In all crystalline samples, the dominant intermolecular packing is controlled by one-dimensional (1D) hydrogen-bonded chains that lead to quasi-1D ferromagnetic behavior. Magnetic analysis over 0.4-300 K indicates ordering with strong 1D ferromagnetic exchange along the chains (J/k = 12-22 K). Interchain exchange is estimated to be 33- to 150-fold weaker, based on antiferromagnetic ordered phase formation below Neel temperatures in the 0.4-1.2 K range for the various compositions. The ordering temperatures of the orthorhombic samples increase linearly as (1 - x) increases from 0.25 to 1.00. The variation is attributed to increased interchain distance corresponding to decreased interchain exchange, when more F4BImNN is added into the orthorhombic lattice. The monoclinic samples are not part of the same trend, due to the different interchain arrangement associated with the phase change.
Resumo:
Catalysts containing 10%Co supported on CexZr1-xO2 (0 < x < 1) were applied to ethanol steam reforming reactions. The catalysts were characterized by Raman spectroscopy, XANES-H-2 and DRS-UV-Vis. The catalytic tests were conducted at 673, 773 and 873 K, with molar ratios of H2O:ethanol = 3:1. The ethanol conversion and H-2 selectivity were temperature dependent and the association of CeO2 with ZrO2 in the support led to show a low formation of CO, due to the higher mobility of oxygen. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In the present work we revisit the size data of CdS microcrystals previously collected in the glassy matrix of Germanium oxide. The CdS clusters analyzed using electron microscopy images have shown a wurtzite structure. The mean average radius, dispersion and volume evaluated from the histograms showed good agreement for t(1/3), t(2/3) and t laws, respectively. We observed that the amount of microcrystals remains constant throughout the heat treatment process, as well as that the radii distribution has a lower limit and increases with heat treatment. The distribution of radii follows a distribution similar to the Lifshitz-Slyozov-Wagner distribution limited in the origin. Discussions led to the conclusion that the growth of CdS is a process that occurs after the fluctuating nucleation and coalescence phases. We then analyze the growth process, assuming that the evaporation is overcome by the precipitation rate, stabilizing all clusters with respect to dissolution back into the matrix. The problem was simplified neglecting anisotropy and the assuming a spherical shape for clusters and particles. The low interface tension was described in terms of an empirical potential barrier in the surface of the cluster. The growth dynamics developed considering that the number of clusters remains constant, and that the minimum size of these clusters grow with time, as the first order approximation showed a good agreement with the flaw. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
PEM fuel cells seem to be the most affordable and commercially viable hydrogen-based cells, the biggest challenge being to obtain CO-free H-2 (<100 ppm) as the fuel. In this study, the use of CuO-CeO2 catalysts in preferential oxidation of CO to obtain CO-free H-2 (PROX reaction) was investigated. Ce1-xCuxO2 catalysts, with x (mol%) = 0, 0.01, 0.03, 0.05 and 0.10, were synthesized in one-step by the polymeric precursor method, to obtain a very fine dispersion and strong metal-support interaction, to favor active copper species and a preference for the PROX reaction. The results obtained from catalyzed reactions and characterization of the catalysts by XRD, Rietveld refinement, BET surface area, UV-Vis and TPR, suggest that this one-step synthesis method gives rise to catalysts with copper species selective for the PROX reaction, which reaches a maximum rate on Ce0.97Cu0.03O2 catalyst. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
X-ray single crystal (XSC) and neutron powder diffraction data (NPD) were used to elucidate boron site preference for five ternary phases. Ta3Si1-xBx (x=0.112(4)) crystallizes with the Ti3P-type (space group P4(2)/n) with B-atoms sharing the 8g site with Si atoms. Ta5Si3-x (x=0.03(1); Cr5B3- type) crystallizes with space group 14/mcm, exhibiting a small amount of vacancies on the 4 alpha site. Both, Ta-5(Si1-xBx)(3), X=0.568(3), and Nb-5(Si1-xBx)(3), x=0.59(2), are part of solid solutions of M5Si3 with Cr5B3-type into the ternary M-Si-B systems (M=Nb or Ta) with B replacing Si on the 8h site. The D8(8)-phase in the Nb-Si-B system crystallizes with the Ti5Ga4-type revealing the formula Nb5Si3B1-x (x=0.292(3)) with B partially filling the voids in the 2b site of the Mn5Si3 parent type. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Zirconia-ceria solid-solutions are extensively used as promoters for three-way catalysts, which are applied in the control of NOx, CO and hydrocarbons emission from automotive exhausts. In addition, thesematerials can be used as anodes in solid oxide fuel cells (SOFCs) operated with hydrocarbons. There areonly few works on ZrO2-CeO2 ordered mesoporous materials for catalytic applications and for anodes inSOFCs. The interest in these anodes relies on the fact that ZrO2-CeO2materials are mixed ionic/electronic conductors in reducing atmosphere and, therefore, fuel oxidation is produced on its entire surface, while it only occurs in the [anode/electrolyte/gas] interface (triple-phase boundaries) for electronic conductors. In this work, a synthesis method was developed usingZr and Ce chloride precursors, HCl aqueous solution, Pluronic P123 as the structure directing agent, NH4OH to adjust the pH (3-4) and a Teflon autoclave to perform hydrothermal treatment (80ºC/48 hours). The samples were dried and calcined, until 540ºC in N2and 4 hours in air. The X-ray diffraction data showed that powders with higher CeO2 content are formed by a larger fraction of the cubic CeO2 phase, while for a lower CeO2content the major crystalline structure is the tetragonal ZrO2 phase. The NiO impregnation was made with an ethanol dispersion of Ni(NO3)×6H2O. The resulting powder was calcinated in air until 350ºC for 2 hours. Temperature-programmed reduction (TPR) data were collected in order to evaluate the reduction profiles of ZrO2-x%CeO2:Ni samples in H2/Ar atmosphere. Results showed lower reduction temperatures for all ceria content in samples comparing to a NiO standard.
Resumo:
This thesis is focused on studies of substituted Hg-based superconducting copper oxides ((Hg1-xMx)Ba2Can-1CunO2n+2+δ). These compounds are promising objects of investigation, not only from a fundamental point of view but also because of their high values of superconducting transition temperature (Tc) and irreversibility field (Hirr). The first part of the thesis is devoted to optimization of the synthesis procedure for Hg-based cuprates. The influence of different parameters (T, t, p(Hg), p(O2)) on the synthesis of these compounds in sealed silica tubes was studied. Optimal conditions yielded samples containing up to 95% of HgBa2Ca2Cu3O8+δ (Hg-1223). The formation of solid solutions with the formula (Hg1-xCux)Ba2Ca2Cu3O8+δ (where x <= 0.5) was also established. Another technique was developed, using LiF as a flux, for synthesis of samples containing up to 90% of the HgBa2CaCu2O6+δ (Hg-1212) phase. The second part concerns synthesis and studies of oxyfluorides using Hg-1212 and Hg-1223 as starting materials together with XeF2 as a fluorinating agent. It was found that oxyfluorides of both phases have a parabolic dependence of Tc vs. a parameter as well as enhanced Tc values (ΔT ≈ 3-4 K) in comparison with optimally doped non-fluorinated analogues. The crystal structure of Hg-1223 oxyfluoride was studied by X-ray powder and neutron diffraction methods. It is suggested that chemical modification of the crystal structure leads to a decrease in Cu-O distance without noticeable change in Cu-O-Cu angle (in the (CuO2) layers), which may be the significant factors influencing this Tc increase. Hg-1223 oxyfluoride was also studied under high pressure for first time. It was found that this compound has a record-high Tc value (≈ 166 K) at P ≈ 23 GPa. The last part describes the investigation of substituted Hg-based superconductors in the series (Hg0.9M0.1)Ba2CuO4+δ {(Hg,M)-1201}, where M = Tl, Pb, W, Mo, Nb and V. A comprehensive study of these compounds by various methods (X-ray powder diffraction, EDX, IR-, EXAFS- and XANES -spectroscopy) indicated that the change of charge carrier doping level is a crucial factor determining the irreversibility line. (Hg0.9Mo0.1)Ba2CuO4+δ showed the most improved irreversibility line position among the (Hg,M)-1201 compounds studied in this series.
Resumo:
This thesis wad aimed at the study and application of titanium dioxide photocatalytic activity on ceramic materials. As a matter of fact, photocatalysis is a very promising method to face most of the problems connected with the increasing environmental pollution. Furthermore, titanium dioxide, in its anatase crystallographic phase, is one of the most investigated photocatalytic material and results to be perfectly compatible with silicate body mixes. That goal was pursued by two different strategies: 1. the addition to a body mix used for heavy clay products of several titania powders, with different mean crystallite size, surface area, morphology and anatase/rutile ratio and a titania nanosuspension as well. The titania addition followed two procedures: bulk and spray addition over the ceramic samples surface. Titania was added in two different percentages: 2.5 and 7.5 wt.% in both of the methods. The ceramic samples were then fired at three maximum temperatures: 900, 950 and 1000 °C. Afterwards, the photocatalytic activity of the prepared ceramic samples was evaluated by following the degradation of an organic compound in aqueous medium, under UV radiation. The influence of titania morphological characteristics on the photoactivity of the fired materials was studied by means of XRD and SEM observations. The ceramic samples, sprayed with a slip containing 7.5 wt.% of titania powder and fired at 900 °C, have the best photoactivity, with a complete photo-decomposition of the organic compound. At 1000 °C no sample acted as a photocatalyst due to the anatase-to-rutile phase transformation and to the reaction between titania and calcium and iron oxides in the raw materials. 2. The second one foresaw the synthesis of TiO2-SiO2 solid solutions, using the following stoichiometry: Ti1-xSixO2 where x = 0, 0.1, 0.3 and 0.5 atoms per formula unit (apfu). The mixtures were then fired following two thermal cycles, each with three maximum temperatures. The effect of SiO2 addition into the TiO2 crystal structure and, consequently, on its photocatalytic activity when fired at high temperature, was thoroughly investigated by means of XRD, XPS, FE-SEM, TEM and BET analysis. The photoactivity of the prepared powders was assessed both in gas and liquid phase. Subsequently, the TiO2-SiO2 solid solutions, previously fired at 900 °C, were sprayed over the ceramic samples surface in the percentage of 7.5 wt.%. The prepared ceramic samples were fired at 900 and 1000 °C. The photocatalytic activity of the ceramic samples was evaluated in liquid phase. Unfortunately, that samples did not show any appreciable photoactivity. In fact, samples fired at 900 °C showed a pretty low photoactivity, while the one fired at 1000 °C showed no photoactivity at all. This was explained by the excessive coarsening of titania particles. To summarise, titania particle size, more than its crystalline phase, seems to have a relevant role in the photocatalytic activity of the ceramic samples.