147 resultados para Resveratrol


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El resveratrol es un polifenol aislado de la uva al cual se le ha adjudicado actividad terapéutica antitumoral, incremento de longevidad, disminución de peso y protección cardiovascular. Se encuentra disponible como suplemento alimenticio y se vende sin prescripción médica. Evaluar la tolerabilidad de resveratrol, efectos adversos y efectos sobre pruebas de función hepática, renal y perfil de lípidos. Se administró resveratrol 500 mg, vía oral a 8 sujetos sanos durante 30 días y se realizó evaluación clínica, perfil bioquímico y de lípidos al inicio y final del estudio. No se observaron efectos adversos ni alteración en el perfil bioquímico ni de lípidos. El resveratrol fue bien tolerado, mostró ser seguro en dosis diarias de 500 mg, sin embargo se requieren estudios con mayor número de sujetos para confirmarlo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) decreases bioavailability of nitric oxide (NO) and impairs NO-dependent relaxations. Like NO, hydrogen sulfide (H2S) is an antioxidant and vasodilator; however, the effect of ROS on H2S-induced relaxations is unknown. Here we investigated whether ROS altered the effect of H2S on vascular tone in mouse aorta and determined whether resveratrol (RVT) protects it via H2S. Pyrogallol induced ROS formation. It also decreased H2S formation and relaxation induced by l-cysteine and in mouse aorta. Pyrogallol did not alter sodium hydrogensulfide (NaHS)-induced relaxation suggesting that the pyrogallol effect on l-cysteine relaxations was due to endogenous H2S formation. RVT inhibited ROS formation, enhanced l-cysteine-induced relaxations and increased H2S level in aortas exposed to pyrogallol suggesting that RVT protects against "H2S-dysfunctions" by inducing H2S formation. Indeed, H2S synthesis inhibitor AOAA inhibited the protective effects of RVT. RVT had no effect on Ach-induced relaxation that is NO dependent and the stimulatory effect of RVT on H2S-dependent relaxation was also independent of NO. These results demonstrate that oxidative stress impairs endogenous H2S-induced relaxations and RVT offers protection by inducing H2S suggesting that targeting endogenous H2S pathway may prevent vascular dysfunctions associated by oxidative stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Globally, obesity and diabetes (particularly type 2 diabetes) represents a major challenge to world health. Despite decades of intense research efforts, the genetic basis involved in diabetes pathogenesis & conditions associated with obesity are still poorly understood. Recent advances have led to exciting new developments implicating epigenetics as an important mechanism underpinning diabetes and obesity related disease. One epigenetic mechanism known as the "histone code" describes the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as lysine acetyltransferases or KATs and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. Some of the known inhibitors of HDACs (HDACi) have also been shown to act as "chemical chaperones" to alleviate diabetic symptoms. In this review, we discuss the available evidence concerning the roles of HDACs in regulating chaperone function and how this may have implications in the management of diabetes. © 2009 Bentham Science Publishers Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metabolism of arachidonic acid through lipoxygenase pathways leads to the generation of various biologically active eicosanoids. The expression of these enzymes vary throughout the progression of various cancers, and thereby they have been shown to regulate aspects of tumor development. Substantial evidence supports a functional role for lipoxygenase-catalyzed arachidonic and linoleic acid metabolism in cancer development. Pharmacologic and natural inhibitors of lipoxygenases have been shown to suppress carcinogenesis and tumor growth in a number of experimental models. Signaling of hydro[peroxy]fatty acids following arachidonic or linoleic acid metabolism potentially effect diverse biological phenomenon regulating processes such as cell growth, cell survival, angiogenesis, cell invasion, metastatic potential and immunomodulation. However, the effects of distinct LOX isoforms differ considerably with respect to their effects on both the individual mechanisms described and the tumor being examined. 5-LOX and platelet type 12-LOX are generally considered pro-carcinogenic, with the role of 15-LOX-1 remaining controversial, while 15-LOX-2 suppresses carcinogenesis. In this review, we focus on the molecular mechanisms regulated by LOX metabolism in some of the major cancers. We discuss the effects of LOXs on tumor cell proliferation, their roles in cell cycle control and cell death induction, effects on angiogenesis, migration and the immune response, as well as the signal transduction pathways involved in these processes. Understanding the molecular mechanisms underlying the anti-tumor effect of specific, or general, LOX inhibitors may lead to the design of biologically and pharmacologically targeted therapeutic strategies inhibiting LOX isoforms and/or their biologically active metabolites, that may ultimately prove useful in the treatment of cancer, either alone or in combination with conventional therapies. © 2007 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity is associated with many chronic disease states, such as diabetes mellitus, coronary disease and certain cancers, including those of the breast and colon. There is a growing body of evidence that links phytochemicals with the inhibition of adipogenesis and protection against obesity. Mangoes (Mangifera indica L.) are tropical fruits that are rich in a diverse array of bioactive phytochemicals. In this study, methanol extracts of peel and flesh from three archetypal mango cultivars; Irwin, Nam Doc Mai and Kensington Pride, were assessed for their effects on a 3T3-L1 pre-adipocyte cell line model of adipogenesis. High content imaging was used to assess: lipid droplets per cell, lipid droplet area per cell, lipid droplet integrated intensity, nuclei count and nuclear area per cell. Mango flesh extracts from the three cultivars did not inhibit adipogenesis; peel extracts from both Irwin and Nam Doc Mai, however, did so with the Nam Doc Mai extract most potent at inhibiting adipogenesis. Peel extract from Kensington Pride promoted adipogenesis. The inhibition of adipogenesis by Irwin (100 mu g mL(-1)) and Nam Doc Mai peel extracts (50 and 100 mu g mL(-1)) was associated with an increase in the average nuclear area per cell; similar effects were seen with resveratrol, suggesting that these extracts may act through pathways similar to resveratrol. These results suggest that differences in the phytochemical composition between mango cultivars may influence their effectiveness in inhibiting adipogenesis, and points to mango fruit peel as a potential source of nutraceuticals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypertension is a major risk factor for stroke, ischaemic heart disease, and the development of heart failure. Hypertension-induced heart failure is usually preceded by the development of left ventricular hypertrophy (LVH), which represents an adaptive and compensatory response to the increased cardiac workload. Biomechanical stress and neurohumoral activation are the most important triggers of pathologic hypertrophy and the transition of cardiac hypertrophy to heart failure. Non-clinical and clinical studies have also revealed derangements of energy metabolism in hypertensive heart failure. The goal of this study was to investigate in experimental models the molecular mechanisms and signalling pathways involved in hypertension-induced heart failure with special emphasis on local renin-angiotensin-aldosterone system (RAAS), cardiac metabolism, and calcium sensitizers, a novel class of inotropic agents used currently in the treatment of acute decompensated heart failure. Two different animal models of hypertensive heart failure were used in the present study, i.e. hypertensive and salt-sensitive Dahl/Rapp rats on a high salt diet (a salt-sensitive model of hypertensive heart failure) and double transgenic rats (dTGR) harboring human renin and human angiotensinogen genes (a transgenic model of hypertensive heart failure with increased local RAAS activity). The influence of angiotensin II (Ang II) on cardiac substrate utilization and cardiac metabolomic profile was investigated by using gas chromatography coupled to time-of-flight mass spectrometry to detect 247 intermediary metabolites. It was found that Ang II could alter cardiac metabolomics both in normotensive and hypertensive rats in an Ang II receptor type 1 (AT1)-dependent manner. A distinct substrate use from fatty acid oxidation towards glycolysis was found in dTGR. Altered cardiac substrate utilization in dTGR was associated with mitochondrial dysfunction. Cardiac expression of the redox-sensitive metabolic sensor sirtuin1 (SIRT1) was increased in dTGR. Resveratrol supplementation prevented cardiovascular mortality and ameliorated Ang II-induced cardiac remodeling in dTGR via blood pressure-dependent pathways and mechanisms linked to increased mitochondrial biogenesis. Resveratrol dose-dependently increased SIRT1 activity in vitro. Oral levosimendan treatment was also found to improve survival and systolic function in dTGR via blood pressure-independent mechanisms, and ameliorate Ang II-induced coronary and cardiomyocyte damage. Finally, using Dahl/Rapp rats it was demonstrated that oral levosimendan as well as the AT1 receptor antagonist valsartan improved survival and prevented cardiac remodeling. The beneficial effects of levosimendan were associated with improved diastolic function without significantly improved systolic changes. These positive effects were potentiated when the drug combination was administered. In conclusion, the present study points to an important role for local RAAS in the pathophysiology of hypertension-induced heart failure as well as its involvement as a regulator of cardiac substrate utilization and mitochondrial function. Our findings suggest a therapeutic role for natural polyphenol resveratrol and calcium sensitizer, levosimendan, and the novel drug combination of valsartan and levosimendan, in prevention of hypertension-induced heart failure. The present study also provides a better understanding of the pathophysiology of hypertension-induced heart failure, and may help identify potential targets for novel therapeutic interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson´s disease (PD) is a debilitating age-related neurological disorder that affects various motor skills and can lead to a loss of cognitive functions. The motor symptoms are the result of the progressive degeneration of dopaminergic neurons within the substantia nigra. The factors that influence the pathogenesis and the progression of the neurodegeneration remain mostly unclear. This study investigated the role of various programmed cell death (PCD) pathways, oxidative stress, and glial cells both in dopaminergic neurodegeneration and in the protective action of various drugs. To this end, we exposed dopaminergic neuroblastoma cells (SH-SY5Y cells) to 6-OHDA, which produces oxidative stress and activates various PCD modalities that result in neuronal degeneration. Additionally, to explore the role of glia, we prepared rat midbrain primary mixed-cell cultures containing both neurons and glial cell types such as microglia and astroglia and then exposed the cultures to either MPP plus or lipopolysaccharide. Our results revealed that 6-OHDA activated several PCD pathways including apoptosis, autophagic stress, lysosomal membrane permeabilization, and perhaps paraptosis in SH-SY5Y cells. Furthermore, we found that minocycline protected SH-SY5Y cells from 6-OHDA by inhibiting both apoptotic and non-apoptotic PCD modalities. We also observed an inconsistent neuroprotective effect of various dietary anti-oxidant compounds against 6-OHDA toxicity in vitro in SH-SY5Y cells. Specifically, quercetin and curcumin exerted neuroprotection only within a narrow concentration range and a limited time frame, whereas resveratrol and epigallocatechin 3-gallate provided no protection whatsoever. Lastly, we found that molecules such as amantadine may delay or even halt the neurodegeneration in primary cell cultures by inhibiting the release of neurotoxic factors from overactivated microglia and by enhancing the pro-survival actions of astroglia. Together these data suggest that the strategy of dampening oxidative species with anti-oxidants is less effective than preventing the production of toxic factors such as oxidative and pro-inflammatory molecules by pathologically activated microglia. This would subsequently prevent the activation of various PCD modalities that cause neuronal degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os representantes do gênero Arachis são conhecidos como amendoim, e suas sementes possuem grande quantidade de óleos e proteínas, podendo ser consumidas cruas. A espécie mais cultivada do gênero é Arachis hypogaea, que possui grande importância comercial. Outras espécies são também utilizadas para controle das ervas daninhas e cobertura do solo, assim como ornamentais e na alimentação. Arachis repens, popularmente conhecida como grama amendoim, é utilizada como planta ornamental, na formação de pastagens, como forragem e para cobertura do solo em substituição a várias espécies comuns de grama. Diversas substâncias bioativas têm sido identificadas em A. hypogaea. Contudo, estas substâncias ainda não foram descritas em outras espécies do gênero. O objetivo deste trabalho foi o estabelecimento de sistemas de cultivo in vitro para Arachis repens, visando à micropropagação e à análise comparativa da produção de resveratrol em extratos alcoólicos dos materiais produzidos in vitro, em comparação com as plantas in vivo. Segmentos nodais, internodais e foliares foram excisados de plantas in vitro e inoculados em meio MS suplementado com diferentes concentrações de BAP, TDZ, AIA e KIN, utilizados isoladamente ou em combinação. Os explantes apresentaram respostas distintas de acordo com o regulador de crescimento utilizado. Na presença de BAP foi observada a formação de calos compactos, com formação de brotos em diferentes taxas. Na presença de TDZ, segmentos nodais e internodais formaram calos compactos em todas as concentrações. Segmentos nodais cultivados na presença de diferentes concentrações de AIA em combinação com KIN apresentaram a formação de calogênese. Foi também realizada uma avaliação da atividade antioxidante e a presença de fenóis totais em extratos de diferentes materiais in vivo e produzidos in vitro. Nas análises por meio de CLAE, foi possível detectar a presença de resveratrol tanto nos materiais in vivo, quanto os produzidos in vitro. Dessa forma, o trabalho forneceu resultados preliminares sobre as possibilidades de utilização de A. repens para a produção de metabólitos especiais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measures of prevention and control against polycyclic aromatic hydrocarbons (PAHs) focus on an official food control, a code of best practice to reduce PAHs levels by controlling industry and in the development of a chemopreventive strategy. Regulation (EU) 835/2011 establishes maximum levels of PAHs for each food group. In addition, Regulations (EU) 333/2007 and 836/2011 set up the methods of sampling and analysis for its official control. Scientific studies prove that the chemopreventive strategy is effective against these genotoxic compounds effects. Most chemopreventive compounds studied with proven protective effects against PAHs are found in fruit and vegetables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) is a major cause of death in smokers, particularly in those with chronic obstructive pulmonary disease (COPD). Circulating endothelial progenitor cells (EPC) are required for endothelial homeostasis, and their dysfunction contributes to CVD. To investigate EPC dysfunction in smokers, we isolated and expanded blood outgrowth endothelial cells (BOEC) from peripheral blood samples from healthy nonsmokers, healthy smokers, and COPD patients. BOEC from smokers and COPD patients showed increased DNA double-strand breaks and senescence compared to nonsmokers. Senescence negatively correlated with the expression and activity of sirtuin-1 (SIRT1), a protein deacetylase that protects against DNA damage and cellular senescence. Inhibition of DNA damage response by silencing of ataxia telangiectasia mutated (ATM) kinase resulted in upregulation of SIRT1 expression and decreased senescence. Treatment of BOEC from COPD patients with the SIRT1 activator resveratrol or an ATM inhibitor (KU-55933) also rescued the senescent phenotype. Using an in vivo mouse model of angiogenesis, we demonstrated that senescent BOEC from COPD patients are dysfunctional, displaying impaired angiogenic ability and increased apoptosis compared to cells from healthy nonsmokers. Therefore, this study identifies epigenetic regulation of DNA damage and senescence as pathogenetic mechanisms linked to endothelial progenitors' dysfunction in smokers and COPD patients. These defects may contribute to vascular disease and cardiovascular events in smokers and could therefore constitute therapeutic targets for intervention. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are two common forms of NRH-quinone oxidoreductase 2 (NQO2) in the human population resulting from SNP rs1143684. One has phenylalanine at position 47 (NQO2-F47) and the other leucine (NQO2-L47). Using recombinant proteins, we show that these variants have similar steady state kinetic parameters, although NQO2-L47 has a slightly lower specificity constant. NQO2-L47 is less stable towards proteolytic digestion and thermal denaturation than NQO2-F47. Both forms are inhibited by resveratrol, but NQO2-F47 shows negative cooperativity with this inhibitor. Thus these data demonstrate, for the first time, clear biochemical differences between the variants which help explain previous biomedical and epidemiological findings. © 2014 Federation of European Biochemical Societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lot6p (EC 1.5.1.39; Ylr011wp) is the sole quinone oxidoreductase in the budding yeast, Saccharomyces cerevisiae. Using hexahistidine tagged, recombinant Lot6p, we determined the steady-state enzyme kinetic parameters with both NADH and NADPH as electron donors; no cooperativity was observed with these substrates. The NQO1 inhibitor curcumin, the NQO2 inhibitor resveratrol, the bacterial nitroreductase inhibitor nicotinamide and the phosphate mimic vanadate all stabilise the enzyme towards thermal denaturation as judged by differential scanning fluorimetry. All except vanadate have no observable effect on the chemical cross-linking of the two subunits of the Lot6p dimer. These compounds all inhibit Lot6p's oxidoreductase activity, and all except nicotinamide exhibit negative cooperativity. Molecular modelling suggests that curcumin, resveratrol and nicotinamide all bind over the isoalloxazine ring of the FMN cofactor in Lot6p. Resveratrol was predicted to contact an α-helix that links the two active sites. Mutation of Gly-142 (which forms part of this helix) to serine does not greatly affect the thermal stability of the enzyme. However, this variant shows less cooperativity towards resveratrol than the wild type. This suggests a plausible hypothesis for the transmission of information between the subunits and, thus, the molecular mechanism of negative cooperativity in Lot6p.