799 resultados para Recommender System, Opinion Mining, Association Rule Mining, User Review


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A proactive recommender system pushes recommendations to the user when the current situation seems appropriate, without explicit user request. This is conceivable in mobile scenarios such as restaurant or gas station recommendations. In this paper, we present a model for proactivity in mobile recommender systems. The model relies on domain-dependent context modeling in several categories. The recommendation process is divided into two phases to first analyze the current situation and then examine the suitability of particular items. We have implemented a prototype gas station recommender and conducted a survey for evaluation. Results showed good correlation of the output of our system with the assessment of users regarding the question when to generate recommendations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new user cold start issue represents a serious problem in recommender systems as it can lead to the loss of new users who decide to stop using the system due to the lack of accuracy in the recommenda- tions received in that first stage in which they have not yet cast a significant number of votes with which to feed the recommender system?s collaborative filtering core. For this reason it is particularly important to design new similarity metrics which provide greater precision in the results offered to users who have cast few votes. This paper presents a new similarity measure perfected using optimization based on neu- ral learning, which exceeds the best results obtained with current metrics. The metric has been tested on the Netflix and Movielens databases, obtaining important improvements in the measures of accuracy, precision and recall when applied to new user cold start situations. The paper includes the mathematical formalization describing how to obtain the main quality measures of a recommender system using leave- one-out cross validation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los sistemas de recomendación son un tipo de solución al problema de sobrecarga de información que sufren los usuarios de los sitios web en los que se pueden votar ciertos artículos. El sistema de recomendación de filtrado colaborativo es considerado como el método con más éxito debido a que sus recomendaciones se hacen basándose en los votos de usuarios similares a un usuario activo. Sin embargo, el método de filtrado de colaboración tradicional selecciona usuarios insuficientemente representativos como vecinos de cada usuario activo. Esto significa que las recomendaciones hechas a posteriori no son lo suficientemente precisas. El método propuesto en esta tesis realiza un pre-filtrado del proceso, mediante el uso de dominancia de Pareto, que elimina los usuarios menos representativos del proceso de selección k-vecino y mantiene los más prometedores. Los resultados de los experimentos realizados en MovieLens y Netflix muestran una mejora significativa en todas las medidas de calidad estudiadas en la aplicación del método propuesto. ABSTRACTRecommender systems are a type of solution to the information overload problem suffered by users of websites on which they can rate certain items. The Collaborative Filtering Recommender System is considered to be the most successful approach as it make its recommendations based on votes of users similar to an active user. Nevertheless, the traditional collaborative filtering method selects insufficiently representative users as neighbors of each active user. This means that the recommendations made a posteriori are not precise enough. The method proposed in this thesis performs a pre-filtering process, by using Pareto dominance, which eliminates the less representative users from the k-neighbor selection process and keeps the most promising ones. The results from the experiments performed on Movielens and Netflix show a significant improvement in all the quality measures studied on applying the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of the Web 2.0 led to the birth of new textual genres such as blogs, reviews or forum entries. The increasing number of such texts and the highly diverse topics they discuss make blogs a rich source for analysis. This paper presents a comparative study on open domain and opinion QA systems. A collection of opinion and mixed fact-opinion questions in English is defined and two Question Answering systems are employed to retrieve the answers to these queries. The first one is generic, while the second is specific for emotions. We comparatively evaluate and analyze the systems’ results, concluding that opinion Question Answering requires the use of specific resources and methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exponential growth of the subjective information in the framework of the Web 2.0 has led to the need to create Natural Language Processing tools able to analyse and process such data for multiple practical applications. They require training on specifically annotated corpora, whose level of detail must be fine enough to capture the phenomena involved. This paper presents EmotiBlog – a fine-grained annotation scheme for subjectivity. We show the manner in which it is built and demonstrate the benefits it brings to the systems using it for training, through the experiments we carried out on opinion mining and emotion detection. We employ corpora of different textual genres –a set of annotated reported speech extracted from news articles, the set of news titles annotated with polarity and emotion from the SemEval 2007 (Task 14) and ISEAR, a corpus of real-life self-expressed emotion. We also show how the model built from the EmotiBlog annotations can be enhanced with external resources. The results demonstrate that EmotiBlog, through its structure and annotation paradigm, offers high quality training data for systems dealing both with opinion mining, as well as emotion detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a preliminary study in which Machine Learning experiments applied to Opinion Mining in blogs have been carried out. We created and annotated a blog corpus in Spanish using EmotiBlog. We evaluated the utility of the features labelled firstly carrying out experiments with combinations of them and secondly using the feature selection techniques, we also deal with several problems, such as the noisy character of the input texts, the small size of the training set, the granularity of the annotation scheme and the language object of our study, Spanish, with less resource than English. We obtained promising results considering that it is a preliminary study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Recently, much research has been proposed using nature inspired algorithms to perform complex machine learning tasks. Ant colony optimization (ACO) is one such algorithm based on swarm intelligence and is derived from a model inspired by the collective foraging behavior of ants. Taking advantage of the ACO in traits such as self-organization and robustness, this paper investigates ant-based algorithms for gene expression data clustering and associative classification. Methods and material: An ant-based clustering (Ant-C) and an ant-based association rule mining (Ant-ARM) algorithms are proposed for gene expression data analysis. The proposed algorithms make use of the natural behavior of ants such as cooperation and adaptation to allow for a flexible robust search for a good candidate solution. Results: Ant-C has been tested on the three datasets selected from the Stanford Genomic Resource Database and achieved relatively high accuracy compared to other classical clustering methods. Ant-ARM has been tested on the acute lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML) dataset and generated about 30 classification rules with high accuracy. Conclusions: Ant-C can generate optimal number of clusters without incorporating any other algorithms such as K-means or agglomerative hierarchical clustering. For associative classification, while a few of the well-known algorithms such as Apriori, FP-growth and Magnum Opus are unable to mine any association rules from the ALL/AML dataset within a reasonable period of time, Ant-ARM is able to extract associative classification rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To develop a decision support system (DSS), myGRaCE, that integrates service user (SU) and practitioner expertise about mental health and associated risks of suicide, self-harm, harm to others, self-neglect, and vulnerability. The intention is to help SUs assess and manage their own mental health collaboratively with practitioners. Methods: An iterative process involving interviews, focus groups, and agile software development with 115 SUs, to elicit and implement myGRaCE requirements. Results: Findings highlight shared understanding of mental health risk between SUs and practitioners that can be integrated within a single model. However, important differences were revealed in SUs' preferred process of assessing risks and safety, which are reflected in the distinctive interface, navigation, tool functionality and language developed for myGRaCE. A challenge was how to provide flexible access without overwhelming and confusing users. Conclusion: The methods show that practitioner expertise can be reformulated in a format that simultaneously captures SU expertise, to provide a tool highly valued by SUs. A stepped process adds necessary structure to the assessment, each step with its own feedback and guidance. Practice Implications: The GRiST web-based DSS (www.egrist.org) links and integrates myGRaCE self-assessments with GRiST practitioner assessments for supporting collaborative and self-managed healthcare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Personalized recommender systems aim to assist users in retrieving and accessing interesting items by automatically acquiring user preferences from the historical data and matching items with the preferences. In the last decade, recommendation services have gained great attention due to the problem of information overload. However, despite recent advances of personalization techniques, several critical issues in modern recommender systems have not been well studied. These issues include: (1) understanding the accessing patterns of users (i.e., how to effectively model users' accessing behaviors); (2) understanding the relations between users and other objects (i.e., how to comprehensively assess the complex correlations between users and entities in recommender systems); and (3) understanding the interest change of users (i.e., how to adaptively capture users' preference drift over time). To meet the needs of users in modern recommender systems, it is imperative to provide solutions to address the aforementioned issues and apply the solutions to real-world applications. ^ The major goal of this dissertation is to provide integrated recommendation approaches to tackle the challenges of the current generation of recommender systems. In particular, three user-oriented aspects of recommendation techniques were studied, including understanding accessing patterns, understanding complex relations and understanding temporal dynamics. To this end, we made three research contributions. First, we presented various personalized user profiling algorithms to capture click behaviors of users from both coarse- and fine-grained granularities; second, we proposed graph-based recommendation models to describe the complex correlations in a recommender system; third, we studied temporal recommendation approaches in order to capture the preference changes of users, by considering both long-term and short-term user profiles. In addition, a versatile recommendation framework was proposed, in which the proposed recommendation techniques were seamlessly integrated. Different evaluation criteria were implemented in this framework for evaluating recommendation techniques in real-world recommendation applications. ^ In summary, the frequent changes of user interests and item repository lead to a series of user-centric challenges that are not well addressed in the current generation of recommender systems. My work proposed reasonable solutions to these challenges and provided insights on how to address these challenges using a simple yet effective recommendation framework.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Opinion mining and sentiment analysis are important research areas of Natural Language Processing (NLP) tools and have become viable alternatives for automatically extracting the affective information found in texts. Our aim is to build an NLP model to analyze gamers’ sentiments and opinions expressed in a corpus of 9750 game reviews. A Principal Component Analysis using sentiment analysis features explained 51.2 % of the variance of the reviews and provides an integrated view of the major sentiment and topic related dimensions expressed in game reviews. A Discriminant Function Analysis based on the emerging components classified game reviews into positive, neutral and negative ratings with a 55 % accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, Recommender systems play a key role in managing information overload, particularly in areas such as e-commerce, music and cinema. However, despite their good-natured goal, in recent years there has been a growing awareness of their involvement in creating unwanted effects on society, such as creating biases of popularity or filter bubble. This thesis is an attempt to investigate the role of RS and its stakeholders in creating such effects. A simulation study will be performed using EcoAgent, an RL-based multi-stakeholder recommendation system, in a simulation environment that captures key user interactions, suppliers and the recommender system in order to identify possible unhealthy scenarios for stakeholders. In particular, we focus on analyzing the document catalog to see how the diversity of topics that users have access to varies during interactions. Finally, some post-processing methods will be defined on EcoAgent, one reactive and one proactive, which allows us to manipulate the agent’s behavior in order to study whether and how the topic distribution of documents is affected by content providers and by the fairness of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Sulphotransferases are a superfamily of enzymes involved in both detoxification and bioactivation of endogenous and exogenous compounds. The arylsulphotransferase SULT1A1 has been implicated in a decreased activity and thermostability when the wild-type arginine at position 213 of the coding sequence is substituted by a histidine. SULT1A1 is the isoform primarily associated with the conversion of dietary N -OH arylamines to DNA binding adducts and is therefore of interest to determine whether this polymorphism is linked to colorectal cancer. 2. Genotyping, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, was performed using DNA samples of healthy control subjects (n = 402) and patients with histologically proven colorectal cancer (n = 383). Both control and test populations possessed similar frequencies for the mutant allele (32.1 and 31%, respectively; P = 0.935). Results were not altered when age and gender were considered as potential confounders in a logistic regression analysis. 3. Examination of the sulphonating ability of the two allozymes with respect to the substrates p -nitrophenol and paracetamol showed that the affinity and rate of sulphonation was unaffected by substitution of arginine to histidine at position 213 of the amino acid sequence. 4. From this study, we conclude that the SULT1A1 R213H polymorphism is not linked with colorectal cancer in this elderly Australian population.