972 resultados para Random Amplified Polymorphic DNA Technique
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The wide spectrum of candidiasis and its clinical importance encourage the research with the purpose of clarifying the mechanisms of pathogenicity and identification of virulence factors of Candida sp. Therefore, the aim of this study was to verify the adhesion capacity, protease activity and genotypic diversity of oral C. albicans and C. tropicalis isolates. The adhesion ability to the extracellular matrix glycoproteins laminin and fibronectin was evaluated using the ELISA technique. The research of proteases was carried out in agar plate containing bovine albumin and through a quantitative method in buffer solution containing haemoglobin. Intra and interspecies polymorphisms was verified through random amplified polymorphic DNA (RAPD) technique. All C. albicans and C. tropicalis isolates binded to immobilised laminin and fibronectin. Ca33 and Ct13 isolates had relative adhesion index significantly higher than the other isolates for both glycoproteins (P < 0.001). Protease activity was observed in all isolates of C. albicans using either the semi-quantitative or quantitative assay. The protease activity of C. tropicalis was better detected through the quantitative assay. The genotypic diversity by RAPD revealed a heterogeneous population in both species. Nevertheless, C. tropicalis presented higher genetic variability than C. albicans strains.
Resumo:
A simple method developed for genomic DNA isolation from fungus was tested on the red alga, Gelidium sesquipedale (Clem.) Born et Thur., which is commercially exploited for its high sulfated polysaccharide (agar) content. This method is faster, cheaper, and less toxic than conventional phenol/chloroform methods. Random amplified polymorphic DNA (RAPD) amplifications were performed successfully without the necessity of purifying the DNA. RAPD markers were used to investigate the genetic similarity among three natural populations of G. sesquipedale from southern Portugal. Bulked-genomic DNA samples of 15 different individuals were made in each population. These can be conceived of as a sample of the population DNA. Of the 62 primers screened, 41 produced bands and 22 revealed polymorphisms. Genetic similarities among populations were high. Populations that are further away from each other have the lowest similarity coefficients, whereas the intermediate Ingrina population, located on the south coast, showed higher genetic similarity with the Odeceixe population located on the southwest coast, than with the Sao Rafael southern population. This suggests a higher genetic flow between Odeceixe and Ingrina or the result may be a founder effect in the sense that the species has propagated from the east coast to the south coast of Portugal. We conclude that the use of this isolation method with RAPD analysis is appropriate to characterize the genetic variability of this commercial species along its geographical distribution. Large sample sizes can be screened at a relatively low cost. Finding genetic markers for commercial populations of C. sesquipedale may be of industrial interest.
Resumo:
In this study, the genetic variability among 130 accessions of the Portuguese germplasm collection of Cucurbita pepo L. maintained at the Banco Portugues de Germoplasma Vegetal was assessed using AFLP (amplified fragment length polymorphism) and RAPD (random amplified polymorphic DNA) techniques for the identification of a genetically diverse core group of accessions for field phenotypic analysis. The surprisingly completely different molecular patterns exhibited by multiple accessions was later confirmed in the distribution of the putative C. pepo plants into two clusters drastically separated at a very low level of genetic similarity (DICE coefficient = 0.37). Additional analyses with RAPD and ISSR (inter single sequence repeat) markers and the introduction of standard genotypes of C. maxima L. and C. moschata L. into the analyses allowed the identification of multiple accessions of the last species wrongly included in the C. pepo collection. This study is a good example of the usefulness of DNA markers in the establishment and management of plant germplasm collections.
Resumo:
A simple method developed for genomic DNA isolation from fungus was tested on the red alga, Gelidium sesquipedale (Clem.) Born et Thur., which is commercially exploited for its high sulfated polysaccharide (agar) content. This method is faster, cheaper, and less toxic than conventional phenol/chloroform methods. Random amplified polymorphic DNA (RAPD) amplifications were performed successfully without the necessity of purifying the DNA. RAPD markers were used to investigate the genetic similarity among three natural populations of G. sesquipedale from southern Portugal. Bulked-genomic DNA samples of 15 different individuals were made in each population. These can be conceived of as a sample of the population DNA. Of the 62 primers screened, 41 produced bands and 22 revealed polymorphisms. Genetic similarities among populations were high. Populations that are further away from each other have the lowest similarity coefficients, whereas the intermediate Ingrina population, located on the south coast, showed higher genetic similarity with the Odeceixe population located on the southwest coast, than with the Sao Rafael southern population. This suggests a higher genetic flow between Odeceixe and Ingrina or the result may be a founder effect in the sense that the species has propagated from the east coast to the south coast of Portugal. We conclude that the use of this isolation method with RAPD analysis is appropriate to characterize the genetic variability of this commercial species along its geographical distribution. Large sample sizes can be screened at a relatively low cost. Finding genetic markers for commercial populations of C. sesquipedale may be of industrial interest.
Resumo:
In this study, the genetic variability among 130 accessions of the Portuguese germplasm collection of Cucurbita pepo L. maintained at the Banco Portugues de Germoplasma Vegetal was assessed using AFLP (amplified fragment length polymorphism) and RAPD (random amplified polymorphic DNA) techniques for the identification of a genetically diverse core group of accessions for field phenotypic analysis. The surprisingly completely different molecular patterns exhibited by multiple accessions was later confirmed in the distribution of the putative C. pepo plants into two clusters drastically separated at a very low level of genetic similarity (DICE coefficient = 0.37). Additional analyses with RAPD and ISSR (inter single sequence repeat) markers and the introduction of standard genotypes of C. maxima L. and C. moschata L. into the analyses allowed the identification of multiple accessions of the last species wrongly included in the C. pepo collection. This study is a good example of the usefulness of DNA markers in the establishment and management of plant germplasm collections.
Resumo:
P>Yellow and sweet passion fruit are insect-pollinated species native to the tropics. Fruits are used commercially for human consumption worldwide. The yellow passion fruit is an outcrossing species with self-incompatible flowers. However, the reproductive system of the sweet passion fruit (Passiflora alata) has not been well elucidated. The objective of this work was to characterize aspects of the mating system in the sweet passion fruit using random amplified polymorphic DNA (RAPD) and microsatellite markers, particularly the rate of outcrossing in P. alata progenies. A multilocus outcrossing rate of t(m) = 0.994 was determined from RAPD and t(m) = 0.940 from microsatellites, supporting P. alata as an outcrossing species. The fixation indices of the maternal generation (F(m)) were -0.200 and 0.071 with RAPD and microsatellite loci, respectively, indicating the absence of inbreeding in the maternal generation. The paternity correlation (r(p)) varied from -0.008 with RAPD markers to 0.208 with microsatellite markers, suggesting a low probability of finding full sibs within the progenies. The results demonstrated that all progenies assessed in this study were derived from outcrossing.
Resumo:
The Australian-bred lucerne cultivars, Trifecta and Sequel, were found to possess useful levels of resistance to both Colletotrichum trifolii races 1 and 2. Race 2 has only been previously observed in the United States and surveys did not reveal its presence in Australia. Multilocus fingerprinting using random amplified polymorphic DNA (RAPDs) analysis revealed low diversity (<10% dissimilarity) within Australian C. trifolii collections, and between the Australian race 1 isolates and a US race 2 isolate. Studies on the inheritance of resistance to C. trifolii race 1 in individual clones from Trifecta and Sequel revealed the presence of 2 different genetic mechanisms. One inheritance was for resistance as a recessive trait, and the other indicated that resistance was dominant. The recessive system has never been previously reported, whereas in the US, 2 completely dominant and independent tetrasomic genes Anl and Ant have been reported to condition C. trifolii resistance. It was not possible to fit the observed segregations from our studies to a single-gene model. In contrast to US studies, clones of cv. Sequel exhibiting the recessive resistance reacted differently to spray and stem injection with C. trifolii inoculum, being resistant to the former and susceptible to the latter, providing additional evidence for the presence of a different genetic mechanism conditioning resistance to those previously reported in the US. As C. trifolii is one of the most serious diseases of lucerne worldwide, the future development of molecular markers closely linked to the dominant and recessive resistances identified in these studies, and the relationships between these resistances and Anl and Ans as determined by genetic mapping, appear to be useful areas of future study.
Resumo:
Isolations from black stem lesions of sunflower growing in south-eastern Queensland yielded fungi putatively identified as species of Phoma. Pathogenicity assays showed that these isolates were capable of killing sunflower plants under glasshouse conditions. The isolates were compared with authentic cultures of Phoma macdonaldii and other isolates of Phoma taken from sunflower from around the world. Random amplified polymorphic DNA analysis showed that all the Australian isolates examined were very similar to the holotype culture of Phoma macdonaldii from Canada. Sequencing of the internal transcribed spacer regions also revealed the relatedness of the Australian isolates to the holotype. This is the first official record of P. macdonaldii in Australia.
Resumo:
Stem inoculation of clonally propagated lucerne genotypes was used to assess levels of host species and genotype specialisation in Phytophthora medicaginis. A quantitative assessment of pathogenic aggressiveness of 29 P. medicaginis isolates (from lucerne and chickpea) on 9 different clonally propagated lucerne genotypes revealed no significant difference in aggressiveness between isolates from lucerne and those from chickpea on all of the lucerne genotypes. This supported previous studies which showed that P. medicaginis isolates from lucerne and chickpea were indistinguishable using random amplified polymorphic DNA (RAPD) analysis. Analysis of pathogenic aggressiveness towards individual lucerne genotypes revealed, for the first time, specificity of individual P. medicaginis isolates. This has implications for breeding for resistance to P. medicaginis in lucerne, where screening should be done using the widest range of pathogen specificity obtainable.
Resumo:
Microsatellites or simple sequence repeats (SSRs) are ubiquitous in eukaryotic genomes. Single-locus SSR markers have been developed for a number of species, although there is a major bottleneck in developing SSR markers whereby flanking sequences must be known to design 5'-anchors for polymerase chain reaction (PCR) primers. Inter SSR (ISSR) fingerprinting was developed such that no sequence knowledge was required. Primers based on a repeat sequence, such as (CA)(n), can be made with a degenerate 3'-anchor, such as (CA)(8)RG or (AGC)(6)TY. The resultant PCR reaction amplifies the sequence between two SSRs, yielding a multilocus marker system useful for fingerprinting, diversity analysis and genome mapping. PCR products are radiolabelled with P-32 or P-33 via end-labelling or PCR incorporation, and separated on a polyacrylamide sequencing gel prior to autoradiographic visualisation. A typical reaction yields 20-100 bands per lane depending on the species and primer. We have used ISSR fingerprinting in a number of plant species, and report here some results on two important tropical species, sorghum and banana. Previous investigators have demonstrated that ISSR analysis usually detects a higher level of polymorphism than that detected with restriction fragment length polymorphism (RFLP) or random amplified polymorphic DNA (RAPD) analyses. Our data indicate that this is not a result of greater polymorphism genetically, but rather technical reasons related to the detection methodology used for ISSR analysis.
Resumo:
Contents Sex pre-selection of bovine offsprings has commercial relevance for cattle breeders and several methods have been used for embryo sex determination. Polymerase chain reaction (PCR) has proven to be a reliable procedure for accomplishing embryo sexing. To date, most of the PCR-specific primers are derived from the few single-copy Y-chromosome-specific gene sequences already identified in bovines. Their detection demands higher amounts of embryonic genomic material or a nested amplification reaction. In order to circumvent this, limitation we searched for new male-specific sequences potentially useful in embryo sexing using random amplified polymorphic DNA (RAPD) analysis. Random amplified polymorphic DNA (RAPD) assay reproducibility problems can be overcome by its conversion into Sequence Characterized Amplified Region (SCAR) markers. In this work, we describe the identification of two bovine male-specific markers (OPC16(323) and OPF10(1168)) by means of RAPD. These markers were successfully converted into SCARs (OPC16(726) and OPF10(984)) using two pairs of specific primers.Furthermore, inverse PCR (iPCR) methodology was successfully applied to elongate OPC16(323) marker in 159% (from 323 to 837 bp). Both markers are shown to be highly conserved (similarity >= 95%) among bovine zebu and taurine cattle; OPC16(323) is also highly similar to a bubaline Y-chromosome-specific sequence. The primers derived from the two Y-chromosome-specific conserved sequences described in this article showed 100% accuracy when used for identifying male and female bovine genomic DNA, thereby proving their potential usefulness for bovine embryo sexing.
Resumo:
Fifty single oospore progeny were established from an in vitro mating of A1 and A2 mating type isolates of Phytophthora cinnamomi from South Africa. Forty-nine progeny were identified as F-1 hybrids using seven random amplified polymorphic DNA (RAPD) primers, and one was a selfed isolate of the A1 mating type parent. Among the hybrid progeny, 24 and 25 were A1 and A2 mating type, respectively. Aggressiveness of progeny and parental isolates was assessed on 1-year-old seedlings of Eucalyptus smithii. The mean aggressiveness of hybrid oosporic isolates, expressed as lesion length, was significantly (P = 0.0001) lower than that of the parental isolates. No significant difference in aggressiveness of A1 and A2 mating type F-1 hybrid isolates was observed. This is the first report demonstrating sexual recombination in vitro in P. cinnamomi.
Resumo:
Lucerne (Medicago sativa L.) is autotetraploid, and predominantly allogamous. This complex breeding structure maximises the genetic diversity within lucerne populations making it difficult to genetically discriminate between populations. The objective of this study was to evaluate the level of random genetic diversity within and between a selection of Australian-grown lucerne cultivars, with tetraploid M. falcata included as a possible divergent control source. This diversity was evaluated using random amplified polymorphic DNA (RAPDs). Nineteen plants from each of 10 cultivars were analysed. Using 11 RAPD primers, 96 polymorphic bands were scored as present or absent across the 190 individuals. Genetic similarity estimates (GSEs) of all pair-wise comparisons were calculated from these data. Mean GSEs within cultivars ranged from 0.43 to 0.51. Cultivar Venus (0.43) had the highest level of intra-population genetic diversity and cultivar Sequel HR (0.51) had the lowest level of intra-population genetic diversity. Mean GSEs between cultivars ranged from 0.31 to 0.49, which overlapped with values obtained for within-cultivar GSE, thus not allowing separation of the cultivars. The high level of intra- and inter-population diversity that was detected is most likely due to the breeding of synthetic cultivars using parents derived from a number of diverse sources. Cultivar-specific polymorphisms were only identified in the M. falcata source, which like M. sativa, is outcrossing and autotetraploid. From a cluster analysis and a principal components analysis, it was clear that M. falcata was distinct from the other cultivars. The results indicate that the M. falcata accession tested has not been widely used in Australian lucerne breeding programs, and offers a means of introducing new genetic diversity into the lucerne gene pool. This provides a means of maximising heterozygosity, which is essential to maximising productivity in lucerne.
Resumo:
The entire internal transcribed spacer ( ITS) region, including the 5.8S subunit of the nuclear ribosomal DNA ( rDNA), was sequenced by direct double-stranded sequencing of polymerase chain reaction (PCR) amplified fragments. The study included 40 Sporobolus ( Family Poaceae, subfamily Chloridoideae) seed collections from 14 putative species ( all 11 species from the S. indicus complex and three Australian native species). These sequences, along with those from two out-group species [ Pennisetum alopecuroides ( L.) Spreng. and Heteropogon contortus ( L.) P. Beauv. ex Roemer & Schultes, Poaceae, subfamily Panicoideae], were analysed by the parsimony method (PAUP; version 4.0b4a) to infer phylogenetic relationships among these species. The length of the ITS1, 5.8S subunit and ITS2 region were 222, 164 and 218 base pairs ( bp), respectively, in all species of the S. indicus complex, except for the ITS2 region of S. diandrus P. Beauv. individuals, which was 217 bp long. Of the 624 characters included in the analysis, 245 ( 39.3%) of the 330 variable sites contained potential phylogenetic information. Differences in sequences among the members of the S. pyramidalis P. Beauv., S. natalensis (Steud.) Dur & Schinz and S. jacquemontii Kunth. collections were 0%, while differences ranged from 0 to 2% between these and other species of the complex. Similarly, differences in sequences among collections of S. laxus B. K. Simon, S. sessilis B. K. Simon, S. elongatus R. Br. and S. creber De Nardi were 0%, compared with differences of 1-2% between these four species and the rest of the complex. When comparing S. fertilis ( Steud.) Clayton and S. africanus (Poir.) Robyns & Tourney, differences between collections ranged from 0 to 1%. Parsimony analysis grouped all 11 species of the S. indicus complex together, indicating a monophyletic origin. For the entire data set, pair-wise distances among members of the S. indicus complex varied from 0.00 to 1.58%, compared with a range of 20.08-21.44% among species in the complex and the Australian native species studied. A strict consensus phylogenetic tree separated 11 species of the S. indicus complex into five major clades. The phylogeny, based on ITS sequences, was found to be congruent with an earlier study on the taxonomic relationship of the weedy Sporobolus grasses revealed from random amplified polymorphic DNA ( RAPD). However, this cladistic analysis of the complex was not in agreement with that created on past morphological analyses and therefore gives a new insight into the phylogeny of the S. indicus complex.