976 resultados para Rainfall gauging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overland rain retrieval using spaceborne microwave radiometer offers a myriad of complications as land presents itself as a radiometrically warm and highly variable background. Hence, land rainfall algorithms of the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) have traditionally incorporated empirical relations of microwave brightness temperature (Tb) with rain rate, rather than relying on physically based radiative transfer modeling of rainfall (as implemented in the TMI ocean algorithm). In this paper, sensitivity analysis is conducted using the Spearman rank correlation coefficient as benchmark, to estimate the best combination of TMI low-frequency channels that are highly sensitive to the near surface rainfall rate from the TRMM Precipitation Radar (PR). Results indicate that the TMI channel combinations not only contain information about rainfall wherein liquid water drops are the dominant hydrometeors but also aid in surface noise reduction over a predominantly vegetative land surface background. Furthermore, the variations of rainfall signature in these channel combinations are not understood properly due to their inherent uncertainties and highly nonlinear relationship with rainfall. Copula theory is a powerful tool to characterize the dependence between complex hydrological variables as well as aid in uncertainty modeling by ensemble generation. Hence, this paper proposes a regional model using Archimedean copulas, to study the dependence of TMI channel combinations with respect to precipitation, over the land regions of Mahanadi basin, India, using version 7 orbital data from the passive and active sensors on board TRMM, namely, TMI and PR. Studies conducted for different rainfall regimes over the study area show the suitability of Clayton and Gumbel copulas for modeling convective and stratiform rainfall types for the majority of the intraseasonal months. Furthermore, large ensembles of TMI Tb (from the most sensitive TMI channel combination) were generated conditional on various quantiles (25th, 50th, 75th, and 95th) of the convective and the stratiform rainfall. Comparatively greater ambiguity was observed to model extreme values of the convective rain type. Finally, the efficiency of the proposed model was tested by comparing the results with traditionally employed linear and quadratic models. Results reveal the superior performance of the proposed copula-based technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terrestrial water storage (TWS) plays a key role in the global water cycle and is highly influenced by climate variability and human activities. In this study, monthly TWS, rainfall and Ganga-Brahmaputra river discharge (GBRD) are analysed over India for the period of 2003-12 using remote sensing satellite data. The spatial pattern of mean TWS shows a decrease over a large and populous region of Northern India comprising the foothills of the Himalayas, the Indo-Gangetic Plains and North East India. Over this region, the mean monthly TWS exhibits a pronounced seasonal cycle and a large interannual variability, highly correlated with rainfall and GBRD variations (r > 0.8) with a lag time of 2 months and 1 month respectively. The time series of monthly TWS shows a consistent and statistically significant decrease of about 1 cm year(-1) over Northern India, which is not associated with changes in rainfall and GBRD. This recent change in TWS suggests a possible impact of rapid industrialization, urbanization and increase in population on land water resources. Our analysis highlights the potential of the Earth-observation satellite data for hydrological applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant changes are reported in extreme rainfall characteristics over India in recent studies though there are disagreements on the spatial uniformity and causes of trends. Based on recent theoretical advancements in the Extreme Value Theory (EVT), we analyze changes in extreme rainfall characteristics over India using a high-resolution daily gridded (1 degrees latitude x 1 degrees longitude) dataset. Intensity, duration and frequency of excess rain over a high threshold in the summer monsoon season are modeled by non-stationary distributions whose parameters vary with physical covariates like the El-Nino Southern Oscillation index (ENSO-index) which is an indicator of large-scale natural variability, global average temperature which is an indicator of human-induced global warming and local mean temperatures which possibly indicate more localized changes. Each non-stationary model considers one physical covariate and the best chosen statistical model at each rainfall grid gives the most significant physical driver for each extreme rainfall characteristic at that grid. Intensity, duration and frequency of extreme rainfall exhibit non-stationarity due to different drivers and no spatially uniform pattern is observed in the changes in them across the country. At most of the locations, duration of extreme rainfall spells is found to be stationary, while non-stationary associations between intensity and frequency and local changes in temperature are detected at a large number of locations. This study presents the first application of nonstationary statistical modeling of intensity, duration and frequency of extreme rainfall over India. The developed models are further used for rainfall frequency analysis to show changes in the 100-year extreme rainfall event. Our findings indicate the varying nature of each extreme rainfall characteristic and their drivers and emphasize the necessity of a comprehensive framework to assess resulting risks of precipitation induced flooding. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regionalization of extreme rainfall is useful for various applications in hydro-meteorology. There is dearth of regionalization studies on extreme rainfall in India. In this perspective, a set of 25 regions that are homogeneous in 1-, 2-, 3-, 4- and 5-day extreme rainfall is delineated based on seasonality measure of extreme rainfall and location indicators (latitude, longitude and altitude) by using global fuzzy c-means (GFCM) cluster analysis. The regions are validated for homogeneity in L-moment framework. One of the applications of the regions is in arriving at quantile estimates of extreme rainfall at sparsely gauged/ungauged locations using options such as regional frequency analysis (RFA). The RFA involves use of rainfall-related information from gauged sites in a region as the basis to estimate quantiles of extreme rainfall for target locations that resemble the region in terms of rainfall characteristics. A procedure for RFA based on GFCM-delineated regions is presented and its effectiveness is evaluated by leave-one-out cross validation. Error in quantile estimates for ungauged sites is compared with that resulting from the use of region-of-influence (ROI) approach that forms site-specific regions exclusively for quantile estimation. Results indicate that error in quantile estimates based on GFCM regions and ROI are fairly close, and neither of them is consistent in yielding the least error over all the sites. The cluster analysis approach was effective in reducing the number of regions to be delineated for RFA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using remotely sensed Tropical Rainfall Measuring Mission (TRMM) 3B42 rainfall and topographic data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Digital Elevation Model (DEM), the impact of oroghraphical aspects such as topography, spatial variability of elevation and altitude of apexes are examined to investigate capacious summer monsoon rainfall over the Western Ghats (WG) of India. TRMM 3B42 v7 rainfall data is validated with Indian Meteorological Department (IMD) gridded rainfall data at 0.5 degrees resolution over the WG. The analysis of spatial pattern of monsoon rainfall with orography of the WG ascertains that the grade of orographic precipitation depends mainly on topography of the mountain barrier followed by steepness of windward side slope and altitude of the mountain. Longer and broader, i.e. cascaded topography, elevated summits and gradually increasing slopes impel the enhancement in precipitation. Comparing topography of various states of the WG, it has been observed that windward side of Karnataka receives intense rainfall in the WG during summer monsoon. It has been observed that the rainfall is enhanced before the peak of the mountain and confined up to the height about 800m over the WG. In addition to this, the spatial distribution of heavy and very heavy rainfall events in the last 14 years has also been explored. Heavy and very heavy rain events on this hilly terrain are categorized with a threshold of precipitation (R) in the range 150>R>120mmday(-1) and exceeding 150mmday(-1) using probability distribution of TRMM 3B42 v7 rainfall. The areas which are prone to heavy precipitation are identified. The study would help policy makers to manage the hazard scenario and, to improve weather predictions on mountainous terrain of the WG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a comprehensive evaluation of five widely used multisatellite precipitation estimates (MPEs) against 1 degrees x 1 degrees gridded rain gauge data set as ground truth over India. One decade observations are used to assess the performance of various MPEs (Climate Prediction Center (CPC)-South Asia data set, CPC Morphing Technique (CMORPH), Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks, Tropical Rainfall Measuring Mission's Multisatellite Precipitation Analysis (TMPA-3B42), and Global Precipitation Climatology Project). All MPEs have high detection skills of rain with larger probability of detection (POD) and smaller ``missing'' values. However, the detection sensitivity differs from one product (and also one region) to the other. While the CMORPH has the lowest sensitivity of detecting rain, CPC shows highest sensitivity and often overdetects rain, as evidenced by large POD and false alarm ratio and small missing values. All MPEs show higher rain sensitivity over eastern India than western India. These differential sensitivities are found to alter the biases in rain amount differently. All MPEs show similar spatial patterns of seasonal rain bias and root-mean-square error, but their spatial variability across India is complex and pronounced. The MPEs overestimate the rainfall over the dry regions (northwest and southeast India) and severely underestimate over mountainous regions (west coast and northeast India), whereas the bias is relatively small over the core monsoon zone. Higher occurrence of virga rain due to subcloud evaporation and possible missing of small-scale convective events by gauges over the dry regions are the main reasons for the observed overestimation of rain by MPEs. The decomposed components of total bias show that the major part of overestimation is due to false precipitation. The severe underestimation of rain along the west coast is attributed to the predominant occurrence of shallow rain and underestimation of moderate to heavy rain by MPEs. The decomposed components suggest that the missed precipitation and hit bias are the leading error sources for the total bias along the west coast. All evaluation metrics are found to be nearly equal in two contrasting monsoon seasons (southwest and northeast), indicating that the performance of MPEs does not change with the season, at least over southeast India. Among various MPEs, the performance of TMPA is found to be better than others, as it reproduced most of the spatial variability exhibited by the reference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interannual variation of Indian summer monsoon rainfall (ISMR) is linked to El Nino-Southern oscillation (ENSO) as well as the Equatorial Indian Ocean oscillation (EQUINOO) with the link with the seasonal value of the ENSO index being stronger than that with the EQUINOO index. We show that the variation of a composite index determined through bivariate analysis, explains 54% of ISMR variance, suggesting a strong dependence of the skill of monsoon prediction on the skill of prediction of ENSO and EQUINOO. We explored the possibility of prediction of the Indian rainfall during the summer monsoon season on the basis of prior values of the indices. We find that such predictions are possible for July-September rainfall on the basis of June indices and for August-September rainfall based on the July indices. This will be a useful input for second and later stage forecasts made after the commencement of the monsoon season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A short-term real-time operation model with fuzzy state variables is developed for irrigation of multiple crops based on earlier work on long-term steady-state policy. The features of the model that distinguish it from the earlier work are (1) apart from inclusion of fuzziness in reservoir storage and in soil moisture of crops, spatial variations in rainfall and soil moisture of crops are included in the real-time operation model by considering gridded command area with a grid size of 0.5 degrees latitude by 0.5 degrees longitude; (2) the water allocation model and soil moisture balance equations are integrated with the real-time operation model with consideration of ponding water depth for Paddy crop; the model solution specifies reservoir releases for irrigation in a 10-day time period and allocations among the crops on a daily basis at each grid by maintaining soil moisture balance at the end of the day; and (3) the release policy is developed using forecasted daily rainfall data of each grid and is implemented for the current time period using actual 10-day inflow and actual daily rainfall of each grid. The real-time operation model is applied to Bhadra Reservoir in Karnataka, India. The results obtained using the real-time operation model are compared with those of the standard operating policy model. Inclusion of fuzziness in reservoir storage and soil moisture of crops captures hydrologic uncertainties in real time. Considerations of irrigation decisions on a daily basis and the gridded command area result in variations in allocating water to the crops, variations in actual crop evapotranspiration, and variations in soil moisture of the crops on a daily basis for each grid of the command area. (C) 2015 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We begin by providing observational evidence that the probability of encountering very high and very low annual tropical rainfall has increased significantly in the most recent decade (1998-present) compared with the preceding warming era (1979-1997). These changes over land and ocean are spatially coherent and comprise a rearrangement of very wet regions and a systematic expansion of dry zones. While the increased likelihood of extremes is consistent with a higher average temperature during the pause (compared with 1979-1997), it is important to note that the periods considered are also characterized by a transition from a relatively warm to a cold phase of the El Nino Southern Oscillation (ENSO). To probe the relation between contrasting phases of ENSO and extremes in accumulation further, a similar comparison is performed between 1960 and 1978 (another extended cold phase of ENSO) and the aforementioned warming era. Though limited by land-only observations, in this cold-to-warm transition, remarkably, a near-exact reversal of extremes is noted both statistically and geographically. This is despite the average temperature being higher in 1979-1997 compared with 1960-1978. Taking this evidence together, we propose that there is a fundamental mode of natural variability, involving the waxing and waning of extremes in accumulation of global tropical rainfall with different phases of ENSO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have addressed the question of whether the massive deficit of 42% in rainfall over the Indian region in June 2014 can be attributed primarily to the El Nino. We have shown that the variation of convection over the Northern part of the Tropical West Pacific (NWTP: 120-150E, 20-30N) plays a major role in determining the all-India rainfall in June with deficit (excess) in rainfall associated with enhancement (suppression) of convection over NWTP. In June 2014, the outgoing long wave radiation (OLR) anomaly over this region was unfavourable, whereas in June 2015, the OLR anomaly over NWTP was favourable and the all-India rainfall was 16% higher than the long-term average. We find that during El Nino, when the convection over the equatorial central Pacific intensifies, there is a high propensity for intensification of convection over NWTP. Thus, El Nino appears to have an impact on the rainfall over the Indian region via its impact on the convection over the West Pacific, particularly over NWTP. This occurred in June 2014, which suggests that the large deficit in June 2014, could be primarily attributed to the El Nino acting via intensification of convection over NWTP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the finite volume method, a 2D numerical model for seepage in unsaturated soil has been established to study the rainfall infiltration in the fractured slope.The result shows that more rain may infiltrate into the slope due to existing fracture and then the pore pressure rises correspondingly. Very probably, it is one of the crucial factors accounting for slope failure. Furthermore a preliminary study has been conducted to investigate the influence of various fracture and rainfall factors such as the depth, width and location of a crack, surface condition, rainfall intensity and duration. Pore pressure and water volumetric content during the transient seepage are carefully examined to reveal the intrinsic mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model for the rain infiltration in the rock-soil slop has been established and solved by using the finite element method. The unsteady water infiltrating process has been simulated to get water content both in the homogeneous and heterogeneous media. The simulated results show that the rock blocks in the rock-soil slop can cause the wetting front moving fast. If the rain intensity is increased, the saturated region will be formed quickly while other conditions are the same. If the rain intensity keeps a constant, it is possible to accelerate the generation of the saturated region by properly increasing the vertical filtration rate of the rock-soil slop. However, if the vertical filtration rate is so far greater than the rain intensity, it will be difficult to form the saturated region in the rock-soil slop. The numerical method was verified by comparing the calculation results with the field test data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the fact that the concentration flowlines of overland flow depend on the surface landform of hillslope, a kinematic wave model was developed for simulating runoff generation and flow concentration caused by rainfall on hillslopes. The model-simulated results agree well with experimental observations. Applying the model to the practical case of Maoping slope, we obtained the characteristics of runoff generation and infiltration on the slope. Especially, the simulated results adequately reflected the confluent pattern of surface runoff, which offers a scientific foundation for designing the drainage engineering on the Maoping slope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model for the rain infiltration in the rock-soil slop has been established and solved by using the finite element method. The unsteady water infiltrating process has been simulated to get water content both in the homogeneous and heterogeneous media. The simulated results show that the rock blocks in the rock-soil slop can cause the wetting front moving fast. If the rain intensity is increased, the saturated region will be formed quickly while other conditions are the same. If the rain intensity keeps a constant, it is possible to accelerate the generation of the saturated region by properly increasing the vertical filtration rate of the rock-soil slop. However, if the vertical filtration rate is so far greater than the rain intensity, it will be difficult to form the saturated region in the rock-soil slop. The numerical method was verified by comparing the calculation results with the field test data.