974 resultados para Rainfall Variability


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The differences on the phase and wavelength of the quasi-stationary waves over the South America generated by El Nino (EN) and La Nina (LN) events seem to affect the daily evolution of the South American Low Level Jet east of the Andes (SALLJ). For the austral summer period of 1977 2004 the SALLJ episodes detected according to Bonner criterion 1 show normal to above-normal frequency in EN years, and in LN years the episodes show normal to below-normal frequency. During EN and LN years the SALLJ episodes were associated with positive rainfall anomalies over the La Plata Basin, but more intense during LN years. During EN years the increase in the SALLJ cases were associated to intensification of the Subtropical Jet (SJ) around 30 degrees S and positive Sea Level Pressure (SLP) anomalies over the western equatorial Atlantic and tropical South America, particularly over central Brazil. This favored the intensification of the northeasterly trade winds over the northern continent and it channeled by the Andes mountain to the La Plata Basin region where negative SLP are found. The SALLJ cases identified during the LN events were weaker and less frequent when compared to those for EN years. In this case the SJ was weaker than in EN years and the negative SLP anomalies over the tropical continent contributed to the inversion of the northeasterly trade winds. Also a southerly flow anomaly was generated by the geostrophic balance due to the anomalous blocking over southeast Pacific and the intense cyclonic transient over the southern tip of South America. As result the warm tropical air brought by the SALLJ encounters the cold extratropical air from the southerly winds over the La Plata basin. This configuration can increase the conditional instability over the La Plata basin and may explain the more intense positive rainfall anomalies in SALLJ cases during LN years than in EN years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied copepod assemblage variability among years, seasons, and tidal states in the Mucuri River estuary (Bahia State, Brazil). Zooplankton samples were collected seasonally through five years (2002-2006) at three sampling stations, one of which was sampled over a complete tidal cycle (two ebb and two flood tides). Temperature, salinity, river flux, and rainfall data were collected. Winter and summer represented dry and wet seasons, respectively. Copepod abundances ranged from 40 to 63% of the total zooplankton assemblage and comprised 46 taxa, among which, common estuarine species such as Temora turbinata (first record for the studied area), Parvocalanus crassirostris, Acartia lilljeborgi, Oithona hebes were the most abundant (euryhaline species). Interannual and seasonal variations were most marked in stenohaline species, e.g.. Notodiaptomus sp. and Thermocyclops minutus; density variations of euryhaline species, which made up the majority of the abundant taxa, were most closely related to tides. Diversity and richness also followed an intertidal pattern of variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the large-scale climatic variability dominant modes in the Pacific and in the Atlantic on Amazonian rainfall is investigated. The composite technique of the Amazon precipitation anomalies is used in this work. The basis years for these composites arc those in the period 1960-1998 with occurrences of extremes in the Southern Oscillation (El Niño or La Niña) and the north/south warm (or cold) sea surface temperature (SST) anomalies dipole pattern in the tropical Atlantic. Warm (cold) dipole means positive (negative) anomalies in the tropical North Atlantic and negative (positive) anomalies in the tropical South Atlantic. Austral summer and autumn composites for extremes in the Southern Oscillation (El Niño or La Niña) and independently for north/south dipole pattern (warm or cold) of the SST anomalies in the tropical Atlantic present values (magnitude and sign) consistent with those found in previous works on the relationship between Amazon rainfall variations and the SST anomalies in the tropical Pacific and Atlantic. However, austral summer and autumn composites for the years with simultaneous occurrences of El Niño and warm north/south dipole of the SST anomalies in the tropical Atlantic show negative precipitation anomalies extending eastward over the center-eastern Amazon. This result indicates the important role played by the tropical Atlantic in the Amazon anomalous rainfall distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporary wetlands undergo recurrent drought due to the scarcity of water, which disrupts the hydrological connectivity with adjacent aquatic systems. However, some environments retain water for longer periods, allowing greater persistence of the community. The current study evaluated differences in the microcrustacean assemblages and limnological variability between perennial and intermittent pools in a semi-arid region of Brazil. The abiotic features (water temperature, pH, total alkalinity, electrical conductivity and depth) of intermittent pools were affected more than perennial pools due to loss of water volume. This may have contributed to a higher average richness and diversity index in some intermittent pools and differences in the structure of the assemblages. The lowest species richness and diversity were recorded where physical factors, such as a large quantity of suspended solids and variability in the electrical conductivity of the water and pH, make the environment unsuitable for these organisms. These results suggest that community development in intermittent pools is interrupted by the dry season; when the water returns, due to rainfall or rising groundwater, each pond undergoes a different process of colonization. In these circumstances, the biological importance of temporary aquatic environments is clear, since such pools provide shelters and have an important role in the maintenance of the regional diversity of aquatic environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rainfall in the semiarid region of Pernambuco is characterized by irregular distribution in time and space, which significantly hinders the rainfed agriculture in the region. This work aims to evaluate the temporal profile of soil moisture in the semiarid region of the Pernambuco State (Brazil) and the effect of different soil surface conditions on soil water content variation and the yield of rainfed beans. To monitor soil water content, five plots 4.5 m wide by 11 m long were installed in a Yellow Argisol (Ultisol). The following treatments were adopted in the experimental plots: natural vegetation, bean intercropped with cactus, beans planted down the slope, beans planted along contour lines with mulch and rock barriers, and bare soil. In each plot, eight PVC access tubes were installed for monitoring the soil water content profile at depths of 0.20 and 0.40 m using a neutron probe device. The surface condition significantly influenced the soil water content variation, both in the dry and rainy seasons. The use of mulch, associated with rock barriers, provided higher soil water content levels than the other treatments and increased the rainfed beans production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of intensity-duration-frequency (IDF) relationships of rainfall events is extremely important to determine the dimensions of surface drainage structures and soil erosion control. The purpose of this study was to obtain IDF equations of 13 rain gauge stations in the state of Santa Catarina in Brazil: Chapecó, Urussanga, Campos Novos, Florianópolis, Lages, Caçador, Itajaí, Itá, Ponte Serrada, Porto União, Videira, Laguna and São Joaquim. The daily rainfall data charts of each station were digitized and then the annual maximum rainfall series were determined for durations ranging from 5 to 1440 min. Based on these, with the Gumbel-Chow distribution, the maximum rainfall was estimated for durations ranging from 5 min to 24 h, considering return periods of 2, 5, 10, 20, 25, 50, and 100 years,. Data agreement with the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test, at 5 % significance level. For each rain gauge station, two IDF equations of rainfall events were adjusted, one for durations from 5 to 120 min and the other from 120 to 1440 min. The results show a high variability in maximum intensity of rainfall events among the studied stations. Highest values of coefficients of variation in the annual maximum series of rainfall were observed for durations of over 600 min at the stations of the coastal region of Santa Catarina.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the subtropical regions of southern Brazil, rainfall distribution is uneven, which results in temporal variability of soil water storage. For grapes, water is generally available in excess and water deficiency occurs only occasionally. Furthermore, on the Southern Plateau of Santa Catarina, there are differences in soil properties, which results in high spatial variability. These two factors affect the composition of wine grapes. Spatio-temporal analyses are therefore useful in the selection of cultural practices as well as of adequate soils for vineyards. In this way, well-suited areas can produce grapes with a more appropriate composition for the production of quality wines. The aim of this study was to evaluate the spatio-temporal variability of water storage in a Cambisol during the growth cycle of a Cabernet Sauvignon vineyard and its relation to selected soil properties. The experimental area consisted of a commercial 8-year-old vineyard in São Joaquim, Santa Catarina, Brazil. A sampling grid with five rows and seven points per row, spaced 12 m apart, was outlined on an area of 3,456 m². Soil samples were collected with an auger at these points, 0.30 m away from the grapevines, in the 0.00-0.30 m layer, to determine gravimetric soil moisture. Measurements were taken once a week from December 2008 to April 2009, and every two weeks from December 2009 to March 2010. In December 2008, undisturbed soil samples were collected to determine bulk density, macro- and microporosity, and disturbed samples were used to quantify particle size distribution and organic carbon content. Results were subjected to descriptive analysis and semivariogram analysis, calculating the mean relative difference and the Pearson correlation. The average water storage in a Cambisol under grapevine on ridges had variable spatial dependence, i.e., the lower the average water storage, the higher the range of spatial dependence. Water storage had a stable spatial pattern during the trial period, indicating that the points with lower water storage or points with higher water storage during a certain period maintain these conditions throughout the experimental period. The relative difference is a simple method to identify positions that represent the average soil water storage more adequately at any time for a given area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANNs) are mathematical models method capable of estimating non-linear response plans. The advantage of these models is to present different responses of the statistical models. Thus, the objective of this study was to develop and to test ANNs for estimating rainfall erosivity index (EI30) as a function of the geographical location for the state of Rio de Janeiro, Brazil and generating a thematic visualization map. The characteristics of latitude, longitude e altitude using ANNs were acceptable to estimating EI30 and allowing visualization of the space variability of EI30. Thus, ANN is a potential option for the estimate of climatic variables in substitution to the traditional methods of interpolation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The climate variability between the growth and harvesting of sugar cane is very important because it directly affects yield. The MODIS sensor has characteristics like spatial and temporal resolution that can be applied to monitoring of vegetative vigor variability in the land surface and then, temporal profiles generation. Agro meteorological data from ECMWF model are free and easy to access and have a good representation of reality. In this study, we used the period between sugar cane growth and harvest in the state of Sao Paulo, Brazil, from temporal profiles selecting of NDVI behavior. For each period the precipitation, evapotranspiration, global radiation, length (days) and degree-days were accumulated. The periods were presented in a map format on MODIS spatial resolution of 250 meters. The results showed the spatial variability of climate variables and the relationship to the reality presented by official data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of the of present study are to study the intraseasonal variability of LLJ and its relation with convective heating of the atmosphere, to establish whether LLJ splits into two branches over the Arabian sea as widely believed, the role of horizonatal wind shear of LLJ in the episodes of intense rainfall events observed over the west coast of India, to perform atmospheric modeling work to test whether small (meso) scale vortices form during intense rainfall events along the west coast; and to study the relation between LLJ and monsoon depression genesis. The results of a study on the evolution of Low Level Jetstream (LLJ) prior to the formation of monsoon depressions are presented. A synoptic model of the temporal evolution of monsoon depression has been produced. There is a systematic temporal evolution of the field of deep convection strength and position of the LLJ axis leading to the genesis of monsoon depression. One of the significant outcomes of the present thesis is that the LLJ plays an important role in the intraseasonal and the interannual variability of Indian monsoon activity. Convection and rainfall are dependent mainly on the cyclonic vorticity in the boundary layer associated with LLJ. Monsoon depression genesis and the episodes of very heavy rainfall along the west coast of India are closely related to the cyclonic shear of the LLJ in the boundary layer and the associated deep convection. Case studies by a mesoscale numerical model (MM5) have shown that the heavy rainfall episodes along the west coast of India are associated with generation of mesoscale cyclonic vortices in the boundary layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study illustrates the biennial oscillation in different ocean-atmosphere parameters associated with interannual variability of Indian summer monsoon rainfall.It also accounts the role of different processes like ENSO, IOD, QBO and ISO in the monsoon variability during the TBO years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The SST convection relation over tropical ocean and its impact on the South Asian monsoon is the first part of this thesis. Understanding the complicated relation between SST and convection is important for better prediction of the variability of the Indian monsoon in subseasonal, seasonal, interannual, and longer time scales. Improved global data sets from satellite scatterometer observations of SST, precipitation and refined reanalysis of global wind fields have made it possible to do a comprehensive study of the SST convection relation. Interaction of the monsoon and Indian ocean has been discussed. A coupled feedback process between SST and the Active-Break cycle of the Asian summer monsoon is a central theme of the thesis. The relation between SST and convection is very important in the field of numerical modeling of tropical rainfall. It is well known that models generally do very well simulating rainfall in areas of tropical convergence zones but are found unable to do satisfactory simulation in the monsoon areas. Thus in this study we critically examined the different mechanisms of generation of deep convection over these two distinct regions.The study reported in chapter 3 has shown that SST - convection relation over the warm pool regions of Indian and west Pacific oceans (monsoon areas) is in such a way that convection increases with SST in the SST range 26-29 C and for SST higher than 29-30 C convection decreases with increase of SST (it is called Waliser type). It is found that convection is induced in areas with SST gradients in the warm pool areas of Indian and west Pacific oceans. Once deep convection is initiated in the south of the warmest region of warm pool, the deep tropospheric heating by the latent heat released in the convective clouds produces strong low level wind fields (Low level Jet - LLJ) on the equatorward side of the warm pool and both the convection and wind are found to grow through a positive feedback process. Thus SST through its gradient acts only as an initiator of convection. The central region of the warm pool has very small SST gradients and large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. The conditionally unstable atmosphere in the tropics is favorable for the production of deep convective clouds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study revealed that southwest monsoon rainfall in Kerala has been declining while increasing in post monsoon season. The annual rainfall exhibits a cyclic trend of 40-60 years, with a significant decline in recent decades. The intensity of climatological droughts was increasing across the State of Kerala through it falls under heavy rainfall zone due to unimodal rainfall pattern. The moisture index across the State of Kerala was moving from B4 to B3 humid, indicating that the State was moving from wetness to dryness within the humid climate.The study confirms that a warming Kerala is real as maximum, minimum and mean temperatures and temperature ranges are increasing. The rate of increase in maximum temperature was high (1.46°C) across the high ranges, followed by the coastal belt (1.09°C) of Kerala while the rate of increase was relatively marginal (0.25°C) across the midlands. The rate of increase in temperature across the high ranges is probably high because of deforestation. It indicates that the highranges and coastal belts in Kerala are vulnerable to global warming and climate change when compared to midlands.Interestingly, the trend in annual rainfall is increasing at Pampadumpara (Idukki), while declining at Ambalavayal across the highranges. In the case of maximum temperature, it was showing increasing trend at Pampadumpara while declining trend at Ambalavayal. In the case of minimum temperature it is declining at Pampadumpara while increasing in Ambalavalal.The paddy productivity in Kerala during kharif / virippu is unlikely to decline due to increasing temperature on the basis of long term climate change, but likely to decline to a considerable extent due to prolonged monsoon season, followed by unusual summer rains as noticed in 2007-08 and 2010-11.All the plantation crops under study are vulnerable to climate variability such as floods and droughts rather than long term changes in temperature and rainfall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present investigation on “Coconut Phenology and Yield Response to Climate Variability and Change” was undertaken at the experimental site, at the Regional Station, Coconut Development Board, KAU Campus, Vellanikkara. Ten palms each of eight-year-old coconut cultivars viz., Tiptur Tall, Kuttiadi (WCT), Kasaragod (WCT) and Komadan (WCT) were randomly selected.The study therefore, reinforces our traditional knowledge that the coconut palm is sensitive to changing weather conditions during the period from primordium initiation to harvest of nuts (about 44 months). Absence of rainfall from December to May due to early withdrawal of northeast monsoon, lack of pre monsoon showers and late onset of southwest monsoon adversely affect the coconut productivity to a considerable extent in the following year under rainfed conditions. The productivity can be increased by irrigating the coconut palm during the dry periods.Increase in temperature, aridity index, number of severe summer droughts and decline in rainfall and moisture index were the major factors for a marginal decline or stagnation in coconut productivity over a period of time, though various developmental schemes were in operation for sustenance of coconut production in the State of Kerala. It can be attributed to global warming and climate change. Therefore, there is a threat to coconut productivity in the ensuing decades due to climate variability and change. In view of the above, there is an urgent need for proactive measures as a part of climate change adaptation to sustain coconut productivity in the State of Kerala.The coconut productivity is more vulnerable to climate variability such as summer droughts rather than climate change in terms of increase in temperature and decline in rainfall, though there was a marginal decrease (1.6%) in the decade of 1981-2009 when compared to that of 1951-80. This aspect needs to be examined in detail by coconut development agencies such as Coconut Development Board and State Agriculture Department for remedial measures. Otherwise, the premier position of Kerala in terms of coconut production is likely to be lost in the ensuing years under the projected climate change scenario. Among the four cultivars studied, Tiptur Tall appears to be superior in terms of reproduction phase and nut yield. This needs to be examined by the coconut breeders in their crop improvement programme as a part of stress tolerant under rainfed conditions. Crop mix and integrated farming are supposed to be the best combination to sustain development in the long run under the projected climate change scenarios. Increase in coconut area under irrigation during summer with better crop management and protection measures also are necessary measures to increase coconut productivity since the frequency of intensity of summer droughts is likely to increase under projected global warming scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behavior of the Asian summer monsoon is documented and compared using the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA) and the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) Reanalysis. In terms of seasonal mean climatologies the results suggest that, in several respects, the ERA is superior to the NCEP-NCAR Reanalysis. The overall better simulation of the precipitation and hence the diabatic heating field over the monsoon domain in ERA means that the analyzed circulation is probably nearer reality. In terms of interannual variability, inconsistencies in the definition of weak and strong monsoon years based on typical monsoon indices such as All-India Rainfall (AIR) anomalies and the large-scale wind shear based dynamical monsoon index (DMI) still exist. Two dominant modes of interannual variability have been identified that together explain nearly 50% of the variance. Individually, they have many features in common with the composite flow patterns associated with weak and strong monsoons, when defined in terms of regional AIR anomalies and the large-scale DMI. The reanalyses also show a common dominant mode of intraseasonal variability that describes the latitudinal displacement of the tropical convergence zone from its oceanic-to-continental regime and essentially captures the low-frequency active/break cycles of the monsoon. The relationship between interannual and intraseasonal variability has been investigated by considering the probability density function (PDF) of the principal component of the dominant intraseasonal mode. Based on the DMI, there is an indication that in years with a weaker monsoon circulation, the PDF is skewed toward negative values (i,e., break conditions). Similarly, the PDFs for El Nino and La Nina years suggest that El Nino predisposes the system to more break spells, although the sample size may limit the statistical significance of the results.