980 resultados para RESOURCES ALLOCATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’industrie forestière est un secteur qui, même s’il est en déclin, se trouve au cœur du débat sur la mondialisation et le développement durable. Pour de nombreux pays tels que le Canada, la Suède et le Chili, les objectifs sont de maintenir un secteur florissant sans nuire à l’environnement et en réalisant le caractère fini des ressources. Il devient important d’être compétitif et d’exploiter de manière efficace les territoires forestiers, de la récolte jusqu’à la fabrication des produits aux usines, en passant par le transport, dont les coûts augmentent rapidement. L’objectif de ce mémoire est de développer un modèle de planification tactique/opérationnelle qui permet d’ordonnancer les activités pour une année de récolte de façon à satisfaire les demandes des usines, sans perdre de vue le transport des quantités récoltées et la gestion des inventaires en usine. L’année se divise en 26 périodes de deux semaines. Nous cherchons à obtenir les horaires et l’affectation des équipes de récolte aux blocs de coupe pour une année. Le modèle mathématique développé est un problème linéaire mixte en nombres entiers dont la structure est basée sur chaque étape de la chaine d’approvisionnement forestière. Nous choisissons de le résoudre par une méthode exacte, le branch-and-bound. Nous avons pu évaluer combien la résolution directe de notre problème de planification était difficile pour les instances avec un grand nombre de périodes. Cependant l’approche des horizons roulants s’est avérée fructueuse. Grâce à elle en une journée, il est possible de planifier les activités de récolte des blocs pour l’année entière (26 périodes).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide an analytical overview of the distortionary eff ects of some common forms of taxes faced by the nonrenewable resources sector of the economy. In the category of taxes meant speci fically to capture the resource rent, we look at a speci c severance tax, an 'ad valorem' severance tax, a profi t tax and a 'lump-sum' tax, with emphasis on their e ffects on the extraction decisions over time and on the initial reserves to be developed. In the category of taxes meant for all sectors of the economy, we look at the corporate income tax and its special provision for the resource sector in the form of a depletion allowance, with emphasis on the eff ects on the intra-industry resource extraction decisions and on the inter-industry allocation of investment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When allocating a resource, geographical and infrastructural constraints have to be taken into account. We study the problem of distributing a resource through a network from sources endowed with the resource to citizens with claims. A link between a source and an agent depicts the possibility of a transfer from the source to the agent. Given the supplies at each source, the claims of citizens, and the network, the question is how to allocate the available resources among the citizens. We consider a simple allocation problem that is free of network constraints, where the total amount can be freely distributed. The simple allocation problem is a claims problem where the total amount of claims is greater than what is available. We focus on consistent and resource monotonic rules in claims problems that satisfy equal treatment of equals. We call these rules fairness principles and we extend fairness principles to allocation rules on networks. We require that for each pair of citizens in the network, the extension is robust with respect to the fairness principle. We call this condition pairwise robustness with respect to the fairness principle. We provide an algorithm and show that each fairness principle has a unique extension which is pairwise robust with respect to the fairness principle. We give applications of the algorithm for three fairness principles: egalitarianism, proportionality and equal sacrifice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic optimization methods have become increasingly important over the last years in economics. Within the dynamic optimization techniques employed, optimal control has emerged as the most powerful tool for the theoretical economic analysis. However, there is the need to advance further and take account that many dynamic economic processes are, in addition, dependent on some other parameter different than time. One can think of relaxing the assumption of a representative (homogeneous) agent in macro- and micro-economic applications allowing for heterogeneity among the agents. For instance, the optimal adaptation and diffusion of a new technology over time, may depend on the age of the person that adopted the new technology. Therefore, the economic models must take account of heterogeneity conditions within the dynamic framework. This thesis intends to accomplish two goals. The first goal is to analyze and revise existing environmental policies that focus on defining the optimal management of natural resources over time, by taking account of the heterogeneity of environmental conditions. Thus, the thesis makes a policy orientated contribution in the field of environmental policy by defining the necessary changes to transform an environmental policy based on the assumption of homogeneity into an environmental policy which takes account of heterogeneity. As a result the newly defined environmental policy will be more efficient and likely also politically more acceptable since it is tailored more specifically to the heterogeneous environmental conditions. Additionally to its policy orientated contribution, this thesis aims making a methodological contribution by applying a new optimization technique for solving problems where the control variables depend on two or more arguments --- the so-called two-stage solution approach ---, and by applying a numerical method --- the Escalator Boxcar Train Method --- for solving distributed optimal control problems, i.e., problems where the state variables, in addition to the control variables, depend on two or more arguments. Chapter 2 presents a theoretical framework to determine optimal resource allocation over time for the production of a good by heterogeneous producers, who generate a stock externalit and derives government policies to modify the behavior of competitive producers in order to achieve optimality. Chapter 3 illustrates the method in a more specific context, and integrates the aspects of quality and time, presenting a theoretical model that allows to determine the socially optimal outcome over time and space for the problem of waterlogging in irrigated agricultural production. Chapter 4 of this thesis concentrates on forestry resources and analyses the optimal selective-logging regime of a size-distributed forest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper critically explores the politics that mediate the use of environmental science assessments as the basis of resource management policy. Drawing on recent literature in the political ecology tradition that has emphasised the politicised nature of the production and use of scientific knowledge in environmental management, the paper analyses a hydrological assessment in a small river basin in Chile, undertaken in response to concerns over the possible overexploitation of groundwater resources. The case study illustrates the limitations of an approach based predominantly on hydrogeological modelling to ascertain the effects of increased groundwater abstraction. In particular, it identifies the subjective ways in which the assessment was interpreted and used by the state water resources agency to underpin water allocation decisions in accordance with its own interests, and the role that a desocialised assessment played in reproducing unequal patterns of resource use and configuring uneven waterscapes. Nevertheless, as Chile’s ‘neoliberal’ political-economic framework privileges the role of science and technocracy, producing other forms of environmental knowledge to complement environmental science is likely to be contentious. In conclusion, the paper considers the potential of mobilising the concept of the hydrosocial cycle to further critically engage with environmental science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes a new application of key psychological concepts in the area of Sociometry for the selection of workers within organizations in which projects are developed. The project manager can use a new procedure to determine which individuals should be chosen from a given pool of resources and how to combine them into one or several simultaneous groups/projects in order to assure the highest possible overall work efficiency from the standpoint of social interaction. The optimization process was carried out by means of matrix calculations performed using a computer or even manually, and based on a number of new ratios generated ad-hoc and composed on the basis of indices frequently used in Sociometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decade mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. It is expected that this tendency will continue to increase with the convergence of fixed Internet wired networks with mobile ones and with the evolution to the full IP architecture paradigm. Therefore mobile wireless communications will be of paramount importance on the development of the information society of the near future. In particular a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation. 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigm). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications to be available in the near future. The approach followed in the design and implementation of the mobile wireless networks of current generation (2G and 3G) has been the stratification of the architecture into a communication protocol model composed by a set of layers, in which each one encompasses some set of functionalities. In such protocol layered model, communications is only allowed between adjacent layers and through specific interface service points. This modular concept eases the implementation of new functionalities as the behaviour of each layer in the protocol stack is not affected by the others. However, the fact that lower layers in the protocol stack model do not utilize information available from upper layers, and vice versa, downgrades the performance achieved. This is particularly relevant if multiple antenna systems, in a MIMO (Multiple Input Multiple Output) configuration, are implemented. MIMO schemes introduce another degree of freedom for radio resource allocation: the space domain. Contrary to the time and frequency domains, radio resources mapped into the spatial domain cannot be assumed as completely orthogonal, due to the amount of interference resulting from users transmitting in the same frequency sub-channel and/or time slots but in different spatial beams. Therefore, the availability of information regarding the state of radio resources, from lower to upper layers, is of fundamental importance in the prosecution of the levels of QoS expected from those multimedia applications. In order to match applications requirements and the constraints of the mobile radio channel, in the last few years researches have proposed a new paradigm for the layered architecture for communications: the cross-layer design framework. In a general way, the cross-layer design paradigm refers to a protocol design in which the dependence between protocol layers is actively exploited, by breaking out the stringent rules which restrict the communication only between adjacent layers in the original reference model, and allowing direct interaction among different layers of the stack. An efficient management of the set of available radio resources demand for the implementation of efficient and low complexity packet schedulers which prioritize user’s transmissions according to inputs provided from lower as well as upper layers in the protocol stack, fully compliant with the cross-layer design paradigm. Specifically, efficiently designed packet schedulers for 4G networks should result in the maximization of the capacity available, through the consideration of the limitations imposed by the mobile radio channel and comply with the set of QoS requirements from the application layer. IEEE 802.16e standard, also named as Mobile WiMAX, seems to comply with the specifications of 4G mobile networks. The scalable architecture, low cost implementation and high data throughput, enable efficient data multiplexing and low data latency, which are attributes essential to enable broadband data services. Also, the connection oriented approach of Its medium access layer is fully compliant with the quality of service demands from such applications. Therefore, Mobile WiMAX seems to be a promising 4G mobile wireless networks candidate. In this thesis it is proposed the investigation, design and implementation of packet scheduling algorithms for the efficient management of the set of available radio resources, in time, frequency and spatial domains of the Mobile WiMAX networks. The proposed algorithms combine input metrics from physical layer and QoS requirements from upper layers, according to the crosslayer design paradigm. Proposed schedulers are evaluated by means of system level simulations, conducted in a system level simulation platform implementing the physical and medium access control layers of the IEEE802.16e standard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents exact, hybrid algorithms for mixed resource Allocation and Scheduling problems; in general terms, those consist into assigning over time finite capacity resources to a set of precedence connected activities. The proposed methods have broad applicability, but are mainly motivated by applications in the field of Embedded System Design. In particular, high-performance embedded computing recently witnessed the shift from single CPU platforms with application-specific accelerators to programmable Multi Processor Systems-on-Chip (MPSoCs). Those allow higher flexibility, real time performance and low energy consumption, but the programmer must be able to effectively exploit the platform parallelism. This raises interest in the development of algorithmic techniques to be embedded in CAD tools; in particular, given a specific application and platform, the objective if to perform optimal allocation of hardware resources and to compute an execution schedule. On this regard, since embedded systems tend to run the same set of applications for their entire lifetime, off-line, exact optimization approaches are particularly appealing. Quite surprisingly, the use of exact algorithms has not been well investigated so far; this is in part motivated by the complexity of integrated allocation and scheduling, setting tough challenges for ``pure'' combinatorial methods. The use of hybrid CP/OR approaches presents the opportunity to exploit mutual advantages of different methods, while compensating for their weaknesses. In this work, we consider in first instance an Allocation and Scheduling problem over the Cell BE processor by Sony, IBM and Toshiba; we propose three different solution methods, leveraging decomposition, cut generation and heuristic guided search. Next, we face Allocation and Scheduling of so-called Conditional Task Graphs, explicitly accounting for branches with outcome not known at design time; we extend the CP scheduling framework to effectively deal with the introduced stochastic elements. Finally, we address Allocation and Scheduling with uncertain, bounded execution times, via conflict based tree search; we introduce a simple and flexible time model to take into account duration variability and provide an efficient conflict detection method. The proposed approaches achieve good results on practical size problem, thus demonstrating the use of exact approaches for system design is feasible. Furthermore, the developed techniques bring significant contributions to combinatorial optimization methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents exact algorithms for the Resource Allocation and Cyclic Scheduling Problems (RA&CSPs). Cyclic Scheduling Problems arise in a number of application areas, such as in hoist scheduling, mass production, compiler design (implementing scheduling loops on parallel architectures), software pipelining, and in embedded system design. The RA&CS problem concerns time and resource assignment to a set of activities, to be indefinitely repeated, subject to precedence and resource capacity constraints. In this work we present two constraint programming frameworks facing two different types of cyclic problems. In first instance, we consider the disjunctive RA&CSP, where the allocation problem considers unary resources. Instances are described through the Synchronous Data-flow (SDF) Model of Computation. The key problem of finding a maximum-throughput allocation and scheduling of Synchronous Data-Flow graphs onto a multi-core architecture is NP-hard and has been traditionally solved by means of heuristic (incomplete) algorithms. We propose an exact (complete) algorithm for the computation of a maximum-throughput mapping of applications specified as SDFG onto multi-core architectures. Results show that the approach can handle realistic instances in terms of size and complexity. Next, we tackle the Cyclic Resource-Constrained Scheduling Problem (i.e. CRCSP). We propose a Constraint Programming approach based on modular arithmetic: in particular, we introduce a modular precedence constraint and a global cumulative constraint along with their filtering algorithms. Many traditional approaches to cyclic scheduling operate by fixing the period value and then solving a linear problem in a generate-and-test fashion. Conversely, our technique is based on a non-linear model and tackles the problem as a whole: the period value is inferred from the scheduling decisions. The proposed approaches have been tested on a number of non-trivial synthetic instances and on a set of realistic industrial instances achieving good results on practical size problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, data handling and data analysis in High Energy Physics requires a vast amount of computational power and storage. In particular, the world-wide LHC Com- puting Grid (LCG), an infrastructure and pool of services developed and deployed by a ample community of physicists and computer scientists, has demonstrated to be a game changer in the efficiency of data analyses during Run-I at the LHC, playing a crucial role in the Higgs boson discovery. Recently, the Cloud computing paradigm is emerging and reaching a considerable adoption level by many different scientific organizations and not only. Cloud allows to access and utilize not-owned large computing resources shared among many scientific communities. Considering the challenging requirements of LHC physics in Run-II and beyond, the LHC computing community is interested in exploring Clouds and see whether they can provide a complementary approach - or even a valid alternative - to the existing technological solutions based on Grid. In the LHC community, several experiments have been adopting Cloud approaches, and in particular the experience of the CMS experiment is of relevance to this thesis. The LHC Run-II has just started, and Cloud-based solutions are already in production for CMS. However, other approaches of Cloud usage are being thought of and are at the prototype level, as the work done in this thesis. This effort is of paramount importance to be able to equip CMS with the capability to elastically and flexibly access and utilize the computing resources needed to face the challenges of Run-III and Run-IV. The main purpose of this thesis is to present forefront Cloud approaches that allow the CMS experiment to extend to on-demand resources dynamically allocated as needed. Moreover, a direct access to Cloud resources is presented as suitable use case to face up with the CMS experiment needs. Chapter 1 presents an overview of High Energy Physics at the LHC and of the CMS experience in Run-I, as well as preparation for Run-II. Chapter 2 describes the current CMS Computing Model, and Chapter 3 provides Cloud approaches pursued and used within the CMS Collaboration. Chapter 4 and Chapter 5 discuss the original and forefront work done in this thesis to develop and test working prototypes of elastic extensions of CMS computing resources on Clouds, and HEP Computing “as a Service”. The impact of such work on a benchmark CMS physics use-cases is also demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a fully Bayesian approach that simultaneously combines basic event and statistically independent higher event-level failure data in fault tree quantification. Such higher-level data could correspond to train, sub-system or system failure events. The full Bayesian approach also allows the highest-level data that are usually available for existing facilities to be automatically propagated to lower levels. A simple example illustrates the proposed approach. The optimal allocation of resources for collecting additional data from a choice of different level events is also presented. The optimization is achieved using a genetic algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small-scale farmers in the Chipata District of Zambia rely on their farm fields to grow maize and groundnuts for food security. Cotton production and surplus food security crops are used to generate income to provide for their families. With increasing population pressure, available land has decreased and farmers struggle to provide the necessary food requirements and income to meet their family’s needs. The purpose of the study was to determine how a farmer can best allocate his land to produce maize, groundnuts and cotton when constrained by labor and capital resources to generate the highest potential for food security and financial gains. Data from the 2008-2009 growing season was compiled and analyzed using a linear programming model. The study determined that farmers make the most profit by allocating all additional land and resources to cotton after meeting their minimum food security requirements. The study suggests growing cotton is a beneficial practice for small-scale subsistence farmers to generate income when restricted by limited resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We rely on a survey of Swiss firms to document deviation from first-best for reasons of internal 'fairness' when allicating resources. This 'socialist' practice is more widespread in smaller than in larger firms. It ignores the reputation and past performance of the managers who apply for dunding, but takes into account their hierarchical position and their past use of resources. Socialism is only partially explained by concerns about empire building and managerial optimism, and it is not meant to benefit shareholders.