979 resultados para Quantum harmonic oscillator
Resumo:
The quantized vortex states of a weakly interacting Bose-Einstein condensate of atoms with attractive interatomic interaction in an axially symmetric harmonic oscillator trap are investigated using the numerical solution of the time-dependent Gross-Pitaevskii equation obtained by the semi-implicit Crank-Nicholson method. The collapse of the condensate is studied in the presence of deformed traps with the larger frequency along either the radial or the axial direction. The critical number of atoms for collapse is calculated as a function of the vortex quantum number L. The critical number increases with increasing angular momentum L of the cortex state but tends to saturate for large L.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is a well known result that the Feynman's path integral (FPI) approach to quantum mechanics is equivalent to Schrodinger's equation when we use as integration measure the Wiener-Lebesgue measure. This results in little practical applicability due to the great algebraic complexibity involved, and the fact is that almost all applications of (FPI) - ''practical calculations'' - are done using a Riemann measure. In this paper we present an expansion to all orders in time of FPI in a quest for a representation of the latter solely in terms of differentiable trajetories and Riemann measure. We show that this expansion agrees with a similar expansion obtained from Schrodinger's equation only up to first order in a Riemann integral context, although by chance both expansions referred to above agree for the free. particle and harmonic oscillator cases. Our results permit, from the mathematical point of view, to estimate the many errors done in ''practical'' calculations of the FPI appearing in the literature and, from the physical point of view, our results supports the stochastic approach to the problem.
Resumo:
Within the approach of supersymmetric quantum mechanics associated with the variational method a recipe to construct the superpotential of three-dimensional confined potentials in general is proposed. To illustrate the construction, the energies of the harmonic oscillator and the Hulthen potential, both confined in three dimensions are evaluated. Comparison with the corresponding results of other approximative and exact numerical results is presented. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A variational analysis of the spiked harmonic oscillator Hamiltonian -d2/dr2 + r2 + lambda/r5/2, lambda > 0, is reported. A trial function automatically satisfying both the Dirichlet boundary condition at the origin and the boundary condition at infinity is introduced. The results are excellent for a very large range of values of the coupling parameter lambda, suggesting that the present variational function is appropriate for the treatment of the spiked oscillator in all its regimes (strong, moderate, and weak interactions).
Resumo:
The problem of a harmonic oscillator coupling to an electromagnetic potential plus a topological-like (Chern-Simons) massive term, in two-dimensional space, is studied in the light of the symplectic formalism proposed by Faddeev and Jackiw for constrained systems.
Resumo:
Eigenstates of a particle in a localized and unconfined harmonic potential well are investigated. Effects due to the variation of the potential parameters as well as certain results from asymptotic expansions are discussed. © 2012 Springer Science+Business Media, LLC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IFT
Resumo:
The main goal of this work is to investigate the effects of a nonlinear cubic term inserted in the Schrödinger equation for one-dimensional potentials studied in Quantum Mechanics textbooks. Being the main tool the numerical analysis in a large number of works, the analysis of this effect by this term in the potential itself, in order to work with an analytical solution, can be considered something new. For the harmonic oscillator potential, the analysis was made from a numerical method, comparing the result with the known results in the literature. In the case of the infinite well potential and the step potential, hoping to work with an analytical solution, by construction we started with the known wavefunction for the linear case noting the effects in the other physical quantities. The coupling of the physical quantities involved in this work has yielded, besides many complications in the calculations, a series of conditions on the existence and validity of the solutions in regard to the system possible configurations
Resumo:
The main goal of this work is to investigate the effects of a nonlinear cubic term inserted in the Schrödinger equation for one-dimensional potentials studied in Quantum Mechanics textbooks. Being the main tool the numerical analysis in a large number of works, the analysis of this effect by this term in the potential itself, in order to work with an analytical solution, can be considered something new. For the harmonic oscillator potential, the analysis was made from a numerical method, comparing the result with the known results in the literature. In the case of the infinite well potential and the step potential, hoping to work with an analytical solution, by construction we started with the known wavefunction for the linear case noting the effects in the other physical quantities. The coupling of the physical quantities involved in this work has yielded, besides many complications in the calculations, a series of conditions on the existence and validity of the solutions in regard to the system possible configurations
Resumo:
The exact expressions for the partition function (Q) and the coefficient of specific heat at constant volume (Cv) for a rotating-anharmonic oscillator molecule, including coupling and rotational cut-off, have been formulated and values of Q and Cv have been computed in the temperature range of 100 to 100,000 K for O2, N2 and H2 gases. The exact Q and Cv values are also compared with the corresponding rigid-rotator harmonic-oscillator (infinite rotational and vibrational levels) and rigid-rotator anharmonic-oscillator (infinite rotational levels) values. The rigid-rotator harmonic-oscillator approximation can be accepted for temperatures up to about 5000 K for O2 and N2. Beyond these temperatures the error in Cv will be significant, because of anharmonicity and rotational cut-off effects. For H2, the rigid-rotator harmonic-oscillator approximation becomes unacceptable even for temperatures as low as 2000 K.
Resumo:
Normal coordinate analysis of a molecule of the type XY7 (point group D5h) has been carried out using Wilson's FG, matrix method and the results have been utilized to calculate the force constants of IF7 from the available Raman and infrared data. Some of the assignments made previously by Lord and others have been revised and with the revised assignments the thermodynamic quantities of IF7 have been computed from 300°K to 1000°K under rigid rotator and harmonic oscillator approximation.
Resumo:
The Lewis (1968) invariant of the time-dependent harmonic oscillator is used to construct exact time-dependent, uniform density solutions of the collisionless Boltzmann equation. The spatially bound solutions are time-periodic.