971 resultados para QTAIM. DFT. Chelate effect. Titanocenes. Coordination bond


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transition metals are often introduced to a catalyst as promoters to improve catalytic performance. In this work, we study the promotion effect of transition metals on Co, the preferred catalytic metal for Fischer-Tropsch synthesis because of its good compromise of activity, selectivity and stability, for ethylene chemisorption using density functional theory (DFT) calculations, aiming to provide some insight into improving the alpha-olefin selectivity. In order to obtain the general trend of influence on ethylene chemisorption, twelve transition metals (Zr, Mn, Re, Ru, Rh, It, Ni, Pd, Pt, Cu, Ag and Au) are calculated. We find that the late transition metals (e.g. Pd and Cu) can decrease ethylene chemisorption energy. These results suggest that the addition of the late transition metals may improve alpha-olefin selectivity. Electronic structure analyses (both charge density distributions and density of states) are also performed and the understanding of calculated results is presented. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Therllloelynalllics of lllodel 11lel1ll)rane systeills containing 1110nollnsaturatecl I)lloSI)holil) ids is strongly infllienced l)y the I)osition of the C==C dOlll)le })ond in tIle acyl chain. The telllI)eratllres of both chain-nlelting (TM) and La -+ HI! (TH) I)hase traIlsitions are lowered by IIp to 20°C when C==C is Inoved froln positions 6 or 11 to I)osition 9 in an 18-carl)on chain. This work is an attellll)t to ellicidate the uIlderlying Illoleclilar Illechanisllls reSI)Onsi])le for tllese draillatic tllerillodynaillic changes. Mixtllres of di-18: 1 l)hoSI)hatidylethanolanline with C==C at l)ositioIlS 6, 9, 11 were llsed, witll a sI1lall aI1lOlint of I)erdellterated tetradecanol, known to })e a gooel rel)Orter of the cllain Illoleclilar order. SI)ectral second 11I0I1lents were llsed to Illonitor tIle La -+ HII I)hase transition, which was fOllnd to ])e ])road (2-6°C), with a slight llysteresis on heatiIlg/cooling. The orientational order I)rofiles were nleasllred 1lSiIlg 2H Illiclear Illagnetic resonance and changes in these order I)rofiles between La aIld HII I)hases silow l)oth a local increase in order in the vicinity of the C==C bonds and an o\Terall decrease ill the average orientational order of the chain as a whole. These Sll])tle changes recluire })oth high-fidelity SI)ectrosCol)y and a careflll data analysis that takes into aCCOllnt the effects due to l)artiall1lagnetically-indllced orientational ordering of the l)ilayers. In tIle COIltext of SOllle recently rel)Orted cross-relaxation 11leaSlirenlents in Silllilar l)llOSI)llolil)iels, 0111' reslilts sllggest that large-anll)litllde conforlllational changes in the interior of tIle I110del 111eI11])ranes I)lay a 1110re significant role than I)reviollsly thOllght.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The exact mechanistic understanding of various organocatalytic systems in asymmetric reactions such as Henry and aza-Henry transformations is important for developing and designing new synthetic organocatalysts. The focus of this dissertation will be on the use of density functional theory (DFT) for studying the asymmetric aza-Henry reaction. The first part of the thesis is a detailed mechanistic investigation of a poorly understood chiral bis(amidine) (BAM) Brønsted acid catalyzed aza-Henry reaction between nitromethane and N-Boc phenylaldimine. The catalyst, in addition to acting as a Brønsted base, serves to simultaneously activate both the electrophile and the nucleophile through dual H-bonding during C-C bond formation and is thus essential for both reaction rate and selectivity. Analysis of the H-bonding interactions revealed that there was a strong preference for the formation of a homonuclear positive charge-assisted H-bond, which in turn governed the relative orientation of substrate binding. Attracted by this well-defined mechanistic investigation, the other important aspect of my PhD research addressed a detailed theoretical analysis accounting for the observed selectivity in diastereoselective versions of this reaction. A detailed inspection of the stereodetermining C-C bond forming transition states for monoalkylated nitronate addition to a range of electronically different aldimines, revealed that the origins of stereoselectivity were controlled by a delicate balance of different factors such as steric, orbital interactions, and the extent of distortion in the catalyst and substrates. The structural analysis of different substituted transition states established an interesting dependency on matching the shape and size of the catalyst (host molecule) and substrates (guest molecules) upon binding, both being key factors governing selectivity, in essence, offering an analogy to positive cooperative binding effect of catalytic enzymes and substrates in Nature. In addition, both intra-molecular (intra-host) and inter-molecular (host-guest, guest-guest) stabilizing interactions play a key role to the high π-facial selectivity. The application of dispersion-corrected functionals (i.e., ωB97X-D and B3LYP-D3) was essential for accurately modeling these stabilizing interactions, indicating the importance of dispersion effects in enantioselectivity. As a brief prelude to more extensive future studies, the influence of a triflate counterion on both reactivity and selectivity in this reaction was also addressed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Síntesi de nous complexos de Ruteni amb lligands no quirals que tenen per fórmula [Ru(phen)([9]aneS3)X] (on X = H2O, py i MeCN). Caracterització espectroscòpica electroquímica i estructural d'aquesta família de complexos. Estudi de les seves propietats catalítiques en front a l'oxidació de substrats orgànics com l'alcohol benzílic en reaccions d'electrocatàlisi. Avaluació cinètica dels mecanismes de substitució entre els complexos Ru-py i Ru-MeCN. Generació d'un interruptor molecular foto-induït. Síntesi de nous complexos quirals de Ru atropoisomèricament purs amb lligands oxazolínics que tenen per fórmula [Ru(trpy)(Ph-box-R)X] on (X = Cl, H2O, py, MeCN, 2-OH-py). Caracterització estructural exhaustiva en estat sòlid (Raig-X) en solució (RMN) i en fase gas (càlculs DFT). Avaluació de la seva activitat catalítica en reaccions asimmetriques d'epoxidació de substrats proquirals. Síntesi de nous lligands polipiridílics quirals amb simetria C3. Estudi de la seva química de coordinació i avaluació de la seva activitat catalítica en reaccions asimmetriques d'oxidació i reducció.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Condensations of 2-(2-aminoethyl)pyridine with 4-methylimidazole-5-carboxaldehyde and 1-methyl-2-imidazolecarboxaldehyde generate the tridentate N donor ligands L and L' respectively. Reactions of Cu(NCS)(2) with L and L' yield respectively CuL(SCN)(NCS) (1) containing a CuN4S core and CuL'(NCS)(2) (2) having a CuN5 core. Both the cores are square pyramidal with SCN bound in 1 at the axial position through the S end. This differential behaviour of SCN in the two complexes despite the ligands being very similar, is investigated by DFT calculations at the B3LYP/TZV level. It is found that DFT calculations predict isolation of the Cu(ligand)(NCS)(2) species for both the ligands L and L'. Presence of an offsetting intermolecular H-bonding between the N atom of the thiocyanate and the N-H proton of the ligand L of an adjacent molecule makes the binding of SCN via the S end feasible in 1 resulting in the H-bonded-dimer Cu2L2(SCN)(2)(NCS)(2). The strength of the H-bond is estimated as 27.1 kJ mol (1) from the DFT calculations. The question of such H-bonding does not arise with L' as it lacks in a similar H atom. Dimeric 1 represents a case of two non-interacting spins. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of isoelectronic replacement of a neutral nitrogen donor atom by an anionic carbon atom in terpyridine ruthenium(II) complexes on the electronic and photophysical properties of the resulting N,C,N'- and C,N,N'-cyclometalated aryl ruthenium(II) complexes were investigated. To this end, a series of complexes was prepared either with ligands containing exclusively nitrogen donor atoms, that is, [Ru(R-1-tpy)(R-2-tpy)](2+) (R-1, R-2 = H, CO2Et), or bearing either one N,C,N'- or C,N,N'-cyclometalated ligand and one tpy ligand, that is, [Ru(R-1-(NCN)-C-Lambda-N-Lambda)(R-2-tpy)](+) and [Ru(R-1-(CNN)-N-Lambda-N-Lambda)(R-2-tpy)](+), respectively. Single-crystal X-ray structure determinations showed that cyclometalation does not significantly alter the overall geometry of the complexes but does change the bond lengths around the ruthenium(II) center, especially the nitrogen-to-ruthenium bond length trans to the carbanion. Substitution of either of the ligands with electron-withdrawing ester functionalities fine-tuned the electronic properties and resulted in the presence of an IR probe. Using trends obtained from redox potentials, emission energies, IR spectroelectrochemical responses, and the character of the lowest unoccupied molecular orbitals from DFT studies, it is shown that the first reduction process and luminescence are associated with the ester-substituted C,N,N'-cyclometalated ligand in [Ru(EtO2C-(CNN)-N-Lambda-N-Lambda)(tpy)](+). Cyclometalation in an N,C,N'-bonding motif changed the energetic order of the ruthenium d(zx), d(yz), and d(xy) orbitals. The red-shifted absorption in the N,C,N'-cyclometalated complexes is assigned to MLCT transitions to the tpy ligand. The red shift observed upon introduction of the ester moiety is associated with an increase in intensity of low-energy transitions, rather than a red shift of the main transition. Cyclometalation in the C,N,N'-binding motif also red-shifts the absorption, but the corresponding transition is associated with both ligand types. Luminescence of the cyclometalated complexes is relatively independent of the mode of cyclometalation, obeying the energy gap law within each individual series.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article we present for the first time accurate density functional theory (DFT) and time-dependent (TD) DFT data for a series of electronically unsaturated five-coordinate complexes [Mn(CO)(3)(L-2)](-), where L-2 stands for a chelating strong pi-donor ligand represented by catecholate, dithiolate, amidothiolate, reduced alpha-diimine (1,4-dialkyl-1,4-diazabutadiene (R-DAB), 2,2'-bipyridine) and reduced 2,2'-biphosphinine types. The single-crystal X-ray structure of the unusual compound [Na(BPY)][Mn(CO)(3)(BPY)]center dot Et2O and the electronic absorption spectrum of the anion [Mn(CO)(3)(BPY)](-) are new in the literature. The nature of the bidentate ligand determines the bonding in the complexes, which varies between two limiting forms: from completely pi-delocalized diamagnetic {(CO)(3)Mn-L-2}(-) for L-2 = alpha-diimine or biphosphinine, to largely valence-trapped {(CO)(3)Mn-1-L-2(2-)}(-) for L-2(2-) = catecholate, where the formal oxidation states of Mn and L-2 can be assigned. The variable degree of the pi-delocalization in the Mn(L-2) chelate ring is indicated by experimental resonance Raman spectra of [Mn(CO)(3)(L-2)](-) (L-2=3,5-di-tBu-catecholate and iPr-DAB), where accurate assignments of the diagnostically important Raman bands have been aided by vibrational analysis. The L-2 = catecholate type of complexes is known to react with Lewis bases (CO substitution, formation of six-coordinate adducts) while the strongly pi-delocalized complexes are inert. The five-coordinate complexes adopt usually a distorted square pyramidal geometry in the solid state, even though transitions to a trigonal bipyramid are also not rare. The experimental structural data and the corresponding DFT-computed values of bond lengths and angles are in a very good agreement. TD-DFT calculations of electronic absorption spectra of the studied Mn complexes and the strongly pi-delocalized reference compound [Fe(CO)(3)(Me-DAB)] have reproduced qualitatively well the experimental spectra. Analyses of the computed electronic transitions in the visible spectroscopic region show that the lowest-energy absorption band always contains a dominant (in some cases almost exclusive) contribution from a pi(HOMO) -> pi*(LUMO) transition within the MnL2 metallacycle. The character of this optical excitation depends strongly on the composition of the frontier orbitals, varying from a partial L-2 -> Mn charge transfer (LMCT) through a fully delocalized pi(MnL2) -> pi*(MnL2) situation to a mixed (CO)Mn -> L-2 charge transfer (LLCT/MLCT). The latter character is most apparent in the case of the reference complex [Fe(CO)(3)(Me-DAB)]. The higher-lying, usually strongly mixed electronic transitions in the visible absorption region originate in the three lower-lying occupied orbitals, HOMO - 1 to HOMO - 3, with significant metal-d contributions. Assignment of these optical excitations to electronic transitions of a specific type is difficult. A partial LLCT/MLCT character is encountered most frequently. The electronic absorption spectra become more complex when the chelating ligand L-2, such as 2,2'-bipyridine, features two or more closely spaced low-lying empty pi* orbitals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The coordination behavior of pyridylmethylthioether type of organic moieties having N2S2 donor set [L-1=1,2-bis(2-pyridylmethylthio)ethane, L-2 = 1,3-bis(2-pyridylmethyl-thio)propane and L-3 = 1,4-bis(2-pyridylmethylthio)butane] with copper(II) chloride and copper(II) bromide have been studied in different chemical environments. Copper(II) chloride assisted C-S bond cleavage of the organic moieties leading to the formation of copper(II) picolinate derivatives, whereas, under similar experimental conditions, no C-S bond cleavage was observed in the reaction with copper(II) bromide. The resulted copper(II) complexes isolated from the different mediums have been characterized by spectroscopic and X-ray crystallographic tools.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A square-planar compound [Cu(pyrimol)Cl] (pyrimol = 4-methyl-2-N-(2-pyridylmethylene)aminophenolate) abbreviated as CuL–Cl) is described as a biomimetic model of the enzyme galactose oxidase (GOase). This copper(II) compound is capable of stoichiometric aerobic oxidation of activated primary alcohols in acetonitrile/water to the corresponding aldehydes. It can be obtained either from Hpyrimol (HL) or its reduced/hydrogenated form Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol; H2L) readily converting to pyrimol (L-) on coordination to the copper(II) ion. Crystalline CuL–Cl and its bromide derivative exhibit a perfect square-planar geometry with Cu–O(phenolate) bond lengths of 1.944(2) and 1.938(2) Å. The cyclic voltammogram of CuL–Cl exhibits an irreversible anodic wave at +0.50 and +0.57 V versus ferrocene/ferrocenium (Fc/Fc+) in dry dichloromethane and acetonitrile, respectively, corresponding to oxidation of the phenolate ligand to the corresponding phenoxyl radical. In the strongly donating acetonitrile the oxidation path involves reversible solvent coordination at the Cu(II) centre. The presence of the dominant CuII–L. chromophore in the electrochemically and chemically oxidised species is evident from a new fairly intense electronic absorption at 400–480 nm ascribed to a several electronic transitions having a mixed pi-pi(L.) intraligand and Cu–Cl -> L. charge transfer character. The EPR signal of CuL–Cl disappears on oxidation due to strong intramolecular antiferromagnetic exchange coupling between the phenoxyl radical ligand (L.) and the copper(II) centre, giving rise to a singlet ground state (S = 0). The key step in the mechanism of the primary alcohol oxidation by CuL–Cl is probably the alpha-hydrogen abstraction from the equatorially bound alcoholate by the phenoxyl moiety in the oxidised pyrimol ligand, Cu–L., through a five-membered cyclic transition state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article presents a treatment of Jay Wright Forrester's life and achievements. The concentration is on the intellectual provenance, emergence and growth of system dynamics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To assess in vitro the shear bond strength at the resin/dentin interface in primary teeth after contamination with fresh human blood. Methods: 75 crowns of primary molars were embedded in acrylic resin and mechanically ground to expose a flat dentin surface. The specimens were randomly assigned to five groups (n=15), according to the surface treatment. Group I (control) had no blood contamination. The other groups were blood-contaminated and subjected to different post-contamination protocols: in Group 2, the surfaces were rinsed with water; in Group 3, the surfaces were air-dried; in Group 4, the surfaces were rinsed and air-dried; and in Group 5, no post-contamination treatment was done. In all groups, a 3-mm dentin bonding site was demarcated, Single Bond adhesive system was applied and resin composite cylinders were bonded. After 24 hours in distilled water, shear bond strength was tested at a crosshead speed of 0.5 mm/minute. Results: Means (in MPa) were: Group 1: 7.1 (+/- 4.2); Group 2: 4.0 (+/- 1.8); Group 3: 0.9 (+/- 0.7); Group 4: 3.9 (+/- 2.2) and Group 5: 1.3 (+/- 1.5). Data were analyzed statistically by the Kruskal-Wallis test at 5% significance level. Groups 2 and 4 were similar to each other (P > 0.05) and both ware similar to Group 1 (P > 0.05). These groups (2, 3 and 4) had statistically significantly higher bond strengths than Groups 3 and 5 (P < 0.05). Blood contamination negatively affected the shear bond strength to primary tooth dentin. Among the blood-contaminated groups, water-rinsed specimens had higher bond strengths than those that were exclusively air-dried or not submitted to any post-contamination protocol before adhesive application.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effectiveness of different light-curing units on the bond strength (push-out) of glass fiber posts in the different thirds of the root (cervical, middle and apical) with different adhesive luting resin systems (dual-cure total-etch; dual-cured and self-etch bonding system; and dual-cure self-adhesive cements), Disks of the samples (n = 144) were used, with approximately 1 mm of thickness of 48 bovine roots restored with glass fiber posts, that were luted with resin cements photo-activated by halogen LCU (QTH, Optilux 501) and blue LED (Ultraled), with power densities of 600 and 550 mW/cm(2), respectively. A universal testing machine (MTS 810 Material Test System) was used with a 1 mm diameter steel rod at cross-head speed of 0.5 mm/min until post extrusion, with load cell of 50 kg, for evaluation of the push-out strength in the different thirds of each sample. The push-out strength values in kgf were converted to MPa and analyzed through Analysis of Variance and Tukey`s test, at significance level of 5%. The results showed that there were no statistical differences between the QTH and LED LCUs. The self-adhesive resin cement had lower values of retention. The total-etch and self-adhesive system resin cements seem to be a possible alternative for glass fiber posts cementation into the radicular canal and the LED LCU can be applied as an alternative to halogen light on photo-activation of dual-cured resin cements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis and characterization of unsymmetric diorganotellurium compounds containing a sterically demanding I-naphthyl or
mesitylligand and a small bite chelating organic ligand capable of 1,4-Te···N(O) intramolecular interaction is described. The reaction
of ArTeCl3 (Ar = I-ClOH7, Np; 2,4,6-Me3C6H2' Mes) with (SB)HgCI [SB = the Schiff base, 2-(4,4'-N02C6H4CH=NC6H3-Me)] or a methyl ketone (RCOCH3) afforded the corresponding dichlorides (SB)ArTeCI2 (Ar = Np, 1Aa; Mes, 1Ba) or (RCOCH2)ArTeCl2 (Ar = Np; R = Ph (2Aa), Me (3Aa), Np (4Aa); Ar = Mes, R = Ph (2Ba)). Reduction of 1Aa and 1Ba by Na2S205 readily gave the tellurides (SB)ArTe (Ar = Np (1A), Mes, (1B) but that of dichlorides derived from methylketones was complicated due to partial decomposition to tellurium powder and diarylditelluride (Ar2Te2), resulting in poor yields of the corresponding tellurides 2A, 2B and 3A. Oxidation of the isolated tellurides with S02Cl2, Br2 and I2 yielded the corresponding dihalides. All the synthesized compounds have been characterized with the help of IR, 1H, l3C, and 125Te NMR and in the case of 2Aa, and 2Ba by X-ray crystallography. Appearance of only one 125Te signal indicated that the unsymmetric derivatives were stable to disproportionation to symmetric species. Intramolecular 1,4-Te· . ·0 secondary bonding interactions (SBIs) are exhibited in the crystal structures of both the tellurium(IV) dichlorides, 2Aa, and 2Ba. Steric repulsion of the mesityl group in the latter dominates over lone pair-bond pair repulsion, resulting in significant widening of the equatorial C-Te-C angle. This appears to be responsible for the lack of Te· . ·CI involved supramolecular associations in the crystal structure of 2Ba.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives
The purpose of this study was to investigate the bond strength of apatite layer on titanium (Ti) substrate coated by biomimetic method and to improve the bonding of apatite layer to Ti substrate by optimizing the alkali heat-treatment process.

Methods
Ti plates pre-treated with an alkali solution of 10 M sodium hydroxide (NaOH) were heat-treated at 600 °C for 1 h at different atmospheres: in air and in vacuum. A dense apatite layer formed on top of the sodium titanate layer after soaking the alkali and heat-treated Ti samples in simulated body fluid (SBF) for up to 3 weeks. The bond strengths of the sodium titanate layer on Ti substrate, and apatite layer on the sodium titanate layer, were measured, respectively, by applying a tensile load. The fracture sites were observed with a scanning electron microscope (SEM).

Results
The apatite layer on the substrate after alkali heat-treatment in air achieved higher bond strength than that on the substrate after alkali heat-treatment in vacuum. It was found that the interfacial structure between the sodium titanate and Ti substrate has a significant influence on the bond strength of the apatite layer.

Significance
It is advised that titanium implants can achieve better osseointegration under load-bearing conditions by depositing an apatite layer in vivo on a Ti surface subjected to alkali and heat-treated in air.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper studies how constraints on the timing of actions affect equilibrium in intertemporal coordination problems. The model exhibits a unique symmetric equilibrium in cut-o¤ strategies. The risk-dominant action of the underlying one-shot game is selected when the option to delay effort is commensurate with the option to wait longer for others' actions. The possibility of waiting longer for the actions of others enhances coordination, but the option of delaying one s actions can induce severe coordination failures: if agents are very patient, they might get arbitrarily low expected payoffs even in cases where coordination would yield arbitrarily large returns.