966 resultados para Q-switched lasers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous Q-switching and mode-locking (QML) is accomplished in a diode-pumped Nd:YAG laser using low-temperature GaAs (LT-GaAs) as the saturable absorber, which also acts as an output coupler at the same time. The repetition rate of the Q-switched envelope increased from 25 to 40 kHz as the pump power increased from 2.2 to 6.9 W. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of 714 MHz. A maximum average output power of 770 mW was obtained. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A passively Q-switched Yb: YAG microchip laser has been constructed by using a doped GaAs as the saturable absorber as well as the output coupler. At 13.5 W of pump power the device produces high-quality 3.4 muJ 52 ns pulses at 1030nm with a pulse repetition rate of 7.8kHz in a TEM00-mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a LD side-pumped fundamental-mode (Mx(2) = 1.35 and My(2) = 1.27) passive Q-switched and mode-locked Nd:YAG laser based on a semiconductor saturable absorber mirror (SESAM). At a pump current of 12.5 A, the average output power of 5.68 W with 80 kHz repetition rate and 2 mu s pulse width of the Q-switched envelope was generated. The repetition rate of the mode-locked pulse within the Q-switched envelope of 88 MHz was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reported an efficient diode pumped Nd ! YVO, 1 064 nm laser passively mode-locked and Q-switched by a semiconductor saturable absorber mirror(SESAM). At the incident pump power of 7. 5 W, 2. 81 W average output power was obtained during stable CW mode locking with a repetition rate of 111 MHz. The optical conversion efficiency was 37. 5% , and the slope efficiency was 39%. So far as we know, this is the highest optical-optical conversion efficiency with a SESAM at home.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A waveguide-saturable absorber with low propagation loss is fabricated by femtosecond pulses in YAG:Cr4+ crystal. Q-switch operation of a Yb fiber laser with the new saturable absorber having absorption saturation parameters similar to the bulk YAG:Cr4+ crystal is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A gain-switched laser transition, of a two-laser-transition cascade laser, that is driven by the adjacent laser transition which is Q-switched is demonstrated using a Ho3+ -doped fluoride fiber laser. Q-switching the 5|6 ? 5|7 transition at 3.002 µm produces stable gain-switched pulses from the 5|7 ? 5|8 transition at 2.074 µm; however, Q-switching the 5|7 ? 5|8 transition produced multiple gain switched pulses from the 5|6 ? 5|7 transition. The gain-switched pulses were measured to be of a similar duration to the Q-switched pulses suggesting that much shorter pulses of closer duration could be generated at pump power higher levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A diode-cladding-pumped dual wavelength Q-switched Ho3+ -doped fluoride cascade fiber laser operating in the mid-infrared is demonstrated. Stable pulse trains from the 5|6 -> 5|7 and 5|7 -> 5|8 laser transitions were produced, and the µs-level time delay between the pulses from each transition was dependent on the pump power. At maximum pump power and at an acousto-optic modulator repetition rate of 25 kHz, the 5|8 -> 5|7 transition pulse operated at 3.005 µm, a pulse energy of 29 µJ, and a pulse width of 380 ns; the 5|7 -> 5|8 transition pulse correspondingly produced 7 µJ pulse energy and 260 ns pulse width at 2.074 µm. To the best of our knowledge, this is the first demonstration of a Q-switched fiber laser operating beyond 3 µm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate an all-fiber passively Q-switched erbiumdoped fiber laser (EDFL) using a gold-nanosphere (GNS) based saturable absorber (SA) with evanescent field interaction. Using the interaction of evanescent field for fabricating SAs, long nonlinear interaction length of evanescent wave and GNSs can be achieved. The GNSs are synthesized from mixing solution of chloroauricacid (HAuCl4) and sodium citrate by the heating effects of the microfiber's evanescent field radiation. The proposed passively Q-switched EDFL could give output pulses at 1562 nm with pulse width of 1.78 μs, a repetition rate of 58.1 kHz, a pulse energy of 133 nJ and a output power of 7.7 mWwhen pumped by a 980 nm laser diode of 237 mW. © 2014 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have proposed and demonstrated a Q-switched Thulium doped bre laser (TDFL) with a ‘Yin-Yang’ all- bre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear ampli ed loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped bre laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally demonstrate pabively Q-switched erbium-doped fiber laser (EDFL) operation using a saturable absorber (SA) based on Fe3O4 nanoparticles (FONPs). As a type of transition metal oxide, the FONPs have a large nonlinear optical response and fast response time. The FONPbased SA pobebes a modulation depth of 8.2% and nonsaturable absorption of 56.6%. Stable pabively Q-switched EDFL pulses with an output pulse energy of 23.76 nJ, a repetition rate of 33.3 kHz, and a pulse width of 3.2 μs were achieved when the input pump power was 110mW. The laser features a low threshold pump power of > 15mW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8km to generate a Q-switching pulse train operating at 1560.2 nm. A 7.7-km-long dispersion compensating fiber with 584 ps·nm?1km?1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395mW to 422mW, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03 μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422mW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.