884 resultados para Protection by p-cycles
Resumo:
Reducing crop row spacing and delaying time of weed emergence may provide crops a competitive edge over weeds. Field experiments were conducted to evaluate the effects of crop row spacing (11, 15, and 23-cm) and weed emergence time (0, 20, 35, 45, 55, and 60 days after wheat emergence; DAWE) on Galium aparine and Lepidium sativum growth and wheat yield losses. Season-long weed-free and crop-free treatments were also established to compare wheat yield and weed growth, respectively. Row spacing and weed emergence time significantly affected the growth of both weed species and wheat grain yields. For both weed species, the maximum plant height, shoot biomass, and seed production were observed in the crop-free plots, and delayed emergence decreased these variables. In weed-crop competition plots, maximum weed growth was observed when weeds emerged simultaneously with the crop in rows spaced 23-cm apart. Less growth of both weed species was observed in narrow row spacing (11-cm) of wheat as compared with wider rows (15 and 23-cm). These weed species produced less than 5 seeds plant-1 in 11-cm wheat rows when they emerged at 60 DAWE. Presence of weeds in the crop especially at early stages was devastating for wheat yields. Therefore, maximum grain yield (4.91tha-1) was recorded in the weed-free treatment at 11-cm row spacing. Delay in time of weed emergence and narrow row spacing reduced weed growth and seed production and enhanced wheat grain yield, suggesting that these strategies could contribute to weed management in wheat.
Resumo:
The alarmone (p)ppGpp regulates transcription, translation, replication, virulence, lipid synthesis, antibiotic sensitivity, biofilm formation, and other functions in bacteria. Signaling nucleotide cyclic di-GMP (c-di-GMP) regulates biofilm formation, motility, virulence, the cell cycle, and other functions. In Mycobacterium smegmatis, both (p) ppGpp and c-di-GMP are synthesized and degraded by bifunctional proteins Rel(Msm) and DcpA, encoded by rel(Msm) and dcpA genes, respectively. We have previously shown that the Delta rel(Msm) and Delta dcpA knockout strains are antibiotic resistant and defective in biofilm formation, show altered cell surface properties, and have reduced levels of glycopeptidolipids and polar lipids in their cell wall (K. R. Gupta, S. Kasetty, and D. Chatterji, Appl Environ Microbiol 81:2571-2578, 2015, http://dx.doi.org/10.1128/AEM.03999-14). In this work, we have explored the phenotypes that are affected by both (p) ppGpp and c-di-GMP in mycobacteria. We have shown that both (p) ppGpp and c-di-GMP are needed to maintain the proper growth rate under stress conditions such as carbon deprivation and cold shock. Scanning electron microscopy showed that low levels of these second messengers result in elongated cells, while high levels reduce the cell length and embed the cells in a biofilm-like matrix. Fluorescence microscopy revealed that the elongated Delta rel(Msm) and Delta dcpA cells are multinucleate, while transmission electron microscopy showed that the elongated cells are multiseptate. Gene expression analysis also showed that genes belonging to functional categories such as virulence, detoxification, lipid metabolism, and cell-wall-related processes were differentially expressed. Our results suggests that both (p) ppGpp and c-di-GMP affect some common phenotypes in M. smegmatis, thus raising a possibility of cross talk between these two second messengers in mycobacteria. IMPORTANCE Our work has expanded the horizon of (p) ppGpp and c-di-GMP signaling in Gram-positive bacteria. We have come across a novel observation that M. smegmatis needs (p) ppGpp and c-di-GMP for cold tolerance. We had previously shown that the Delta rel(Msm) and Delta dcpA strains are defective in biofilm formation. In this work, the overproduction of (p) ppGpp and c-di-GMP encased M. smegmatis in a biofilm-like matrix, which shows that both (p) ppGpp and c-di-GMP are needed for biofilm formation. The regulation of cell length and cell division by (p) ppGpp was known in mycobacteria, but our work shows that c-di-GMP also affects the cell size and cell division in mycobacteria. This is perhaps the first report of c-di-GMP regulating cell division in mycobacteria.
Resumo:
Attempts to record, understand and respond to variations in child welfare and protection reporting, service patterns and outcomes are international, numerous and longstanding. Reframing such variations as an issue of inequity between children and between families opens the way to a new approach to explaining the profound difference in intervention rates between and within countries and administrative districts. Recent accounts of variation have frequently been based on the idea that there is a binary division between bias and risk (or need). Here we propose seeing supply (bias) and demand (risk) factors as two aspects of a single system, both framed, in part, by social structures. A recent finding from a study of intervention rates in England, the 'inverse intervention law', is used to illustrate the complex ways in which a range of factors interact to produce intervention rates. In turn, this analysis raises profound moral, policy, practice and research questions about current child welfare and child protection services.
Resumo:
Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of gamma-glutamylcysteine synthetase-heavy subunit (gamma-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The cellular traffic of haem during the development of the human malaria parasite Plasmodium falciparum, through the stages R (ring), T (trophozoite) and S (schizonts), was investigated within RBC (red blood cells). When Plasmodium cultures were incubated with a fluorescent haem analogue, ZnPPIX (Zn protoporphyrin IX) the probe was seen at the cytoplasm (R stage), and the vesicle-like structure distribution pattern was more evident at T and S stages. The temporal sequence of ZnPPIX uptake by P. falciparum-infected erythrocytes shows that at R and S stages, a time-increase acquisition of the porphyrin reaches the maximum fluorescence distribution after 60 min; in contrast, at the T stage, the maximum occurs after 120 min of ZnPPIX uptake. The difference in time-increase acquisition of the porphyrin is in agreement with a maximum activity of haem uptake at the T stage. To gain insights into haem metabolism, recombinant PfHO (P. falciparum haem oxygenase) was expressed, and the conversion of haem into BV (biliverdin) was detected. These findings point out that, in addition to haemozoin formation, the malaria parasite P. falciparum has evolved two distinct mechanisms for dealing with haem toxicity, namely, the uptake of haem into a cellular compartment where haemozoin is formed and HO activity. However, the low Plasmodium HO activity detected reveals that the enzyme appears to be a very inefficient way to scavenge the haem compared with the Plasmodium ability to uptake the haem analogue ZnPPIX and delivering it to the food vacuole.
Nitric oxide sensing by cytochrome c bonded to a conducting polymer modified glassy carbon electrode
Resumo:
A nitric oxide biosensor based on cytochrome c (an heme protein) covalently immobilized to poly(5-amino-1-naphthol) by using cyanuric chloride as a bridge was developed. The immobilization was studied by cyclic voltammetry and quartz crystal microbalance. The nitric oxide detection as a function of poly(5-amino-1-naphthol) amount was recorded, and the best result was obtained with the electrode prepared by 70 cycles. The sensitivity and detection limit were 0.015 mu A cm(-2)/mu mol L(-1) and 2.85 mu mol L(-1), respectively. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effects of bath composition and electroplating conditions on structure, morphology, and composition of amorphous Fe-Cr-P-Co deposits on AISI 1020 steel substrate, priorly plated with a thin Cu deposit, were investigated. The increase of charge density activates the inclusion of Cr in the deposit. However, above specific values of the charge density, which depend on the deposition current density, the Cr content in the deposit decreases. This Cr content decreasing is probably due to the significant hydrogen evolution with the increasing of deposition cur-rent and charge density. The effect of charge density on the content of Fe and Co is not clear. However, there is a tendency of increasing of Fe content and decreasing of Co content with the raising of current density. The Co is more easily deposited than the P, and its presence results in a more intense inhibition effect on the Cr deposition than the inhibition effect caused by P presence. Scanning electron microscope (SEM) analysis showed that Co increasing in the Fe-Cr-P-Co alloys analyzed does not promote the susceptibility to microcracks, which led to a good quality deposit. The passive film of the Fe-Cr-P-Co alloy shows a high ability formation and high protective capacity, and the results obtained by current density of corrosion, j(cor), show that the deposit with addition of Co, Fe31Cr11P28Co30, presents a higher corrosion resistance than the deposit with addition of Ni, Fe54Cr21P20Ni5. (C) 2004 Published by Elsevier B.V.
Resumo:
Objectives The aim of this work was to study the effects of P. major against the oxidative damage of isolated rat liver mitochondria. Methods The extracts were obtained using methanol (MeOH), ethyl acetate (EAc), dichloromethane (DCM), and hexane (Hex) as solvents. Key findings Hex, DCM, and EAc totally, and MeOH partially, inhibited ROS generation and lipid peroxidation of membranes induced by Fe2+ or t-BOOH. However, only MeOH was able to prevent the t-BOOH-induced glutathione and NAD(P)H oxidation. All extracts chelated Fe2+ and reduced DPP Hradicals. EPR analysis revealed that P. major exhibited potent scavenger activity for hydroxyl radicals. Conclusions The potent antioxidant activity exhibited by P. major was able to prevent oxidative mitochondrial damage, contributing to the understanding of its hepatoprotective action against ROS-mediated toxicity.
Resumo:
Herzwirksame Glykoside sind in der Natur sowohl im Tier- als auch im Pflanzenreich zu finden und werden regelmäßig zur Therpaie von Herzinsuffizienz eingesetzt. In letzter Zeit belegten viele Studien, dass herzwirksame Glykoside vielversprechende Substanzen für die Behandlung von Krebs darstellen. Ihr Wirkmechanismus basiert auf der Hemmung der Na+/K+-ATPase. Die Na+/K+-ATPase spielt neuerdings eine wichtige Rolle in der Krebsbiologie, da sie viele relevante Signalwege beeinflusst. Multiresistenzen gegen Arzneimittel sind oftmals verantwortlich für das Scheitern einer Chemotherapie. Bei multi-drug-resistenten Tumoren erfolgt ein Transport der Chemotherapeutika aus der Krebszelle hinaus durch das Membranprotein P-Glykoprotein. In der vorliegenden Arbeit wurde die Zytotoxizität von 66 herzwirksamen Glykosiden und ihren Derivaten in sensitiven und resistenten Leukämie-Zellen getestet. Die Ergebnisse zeigen, dass diese Naturstoffe die Zell-Linien in verschiedenen molaren Bereichen abtöten. Allerdings waren die Resistenz-Indizes niedrig (d. h. die IC50 Werte waren in beiden Zell-Linien ähnlich). Die untersuchten 66 Substanzen besitzen eine große Vielfalt an chemischen Substituenten. Die Wirkung dieser Substituenten auf die Zytotoxizität wurde daher durch Struktur-Aktivitäts-Beziehung (SAR) erforscht. Des Weiteren wiesen quantitative Struktur-Aktivitäts-Beziehung (QSAR) und molekulares Docking darauf hin, dass die Na+/K+-ATPase in sensitiven und resistenten Zellen unterschiedlich stark exprimiert wird. Eine Herunterregulation der Na+/K+-ATPase in multi-drug-resistenten Zellen wurde durch Western Blot bestätigt und die Wirkung dieser auf relevante Signalwege durch Next-Generation-Sequenzierung weiter verfolgt. Dadurch konnte eine Verbindung zwischen der Überexpression von P-Glykoprotein und der Herunterregulation der Na+/K+-ATPase hergestellt werden. Der zweite Aspekt der Arbeit war die Hemmung von P-Glykoprotein durch herzwirksame Glykoside, welche durch Hochdurchsatz-Durchflusszytometrie getestet wurde. Sechs wirksame Glykoside konnten den P-Glykoprotein-vermittelten Transport von Doxorubicin inhibieren. Zudem konnte die Zytotoxität von Doxorubicin in multi-drug-resistenten Zellen teilweise wieder zurück erlangt werden. Unabhängig von herzwirksamen Glykosiden war die Bewertung der Anwendung von molekularem Docking in der P-Glykoprotein Forschung ein weiterer Aspekt der Arbeit. Es ließ sich schlussfolgern, dass molekulares Docking fähig ist, zwischen den verschiedenen Molekülen zu unterscheiden, die mit P-Glykoprotein interagieren. Die Anwendbarkeit von molekularem Docking in Bezug auf die Bestimmung der Bindestelle einer Substanz wurde ebenfalls untersucht.
Resumo:
Traditional courses and textbooks in occupational safety emphasize rules, standards, and guidelines. This paper describes the early stage of a project to upgrade a traditional college course on fire protection by incorporating learning materials to develop the higher-level cognitive ability known as synthesis. Students will be challenged to synthesize textbook information into fault tree diagrams. The paper explains the place of synthesis in Bloom’s taxonomy of cognitive abilities and the utility of fault trees diagrams as a tool for synthesis. The intended benefits for students are: improved abilities to synthesize, a deeper understanding of fire protection practices, ability to construct fault trees for a wide range of undesired occurrences, and perhaps recognition that heavy reliance on memorization is the hard way to learn occupational safety and health.
Resumo:
BACKGROUND: The noble gas helium is devoid of anesthetic effects, and it elicits cardiac preconditioning. We hypothesized that inhalation of helium provides protection against postocclusive endothelial dysfunction after ischemia-reperfusion of the forearm in humans. METHODS: Eight healthy male subjects were enrolled in this study with a crossover design. Each volunteer was randomly exposed to 15 min of forearm ischemia in the presence or absence of helium inhalation. Helium was inhaled at an end-tidal concentration of 50 vol% from 15 min before ischemia until 5 min after the onset of reperfusion ("helium conditioning"). Hyperemic reaction, a marker of nitric oxide bioavailability and endothelial function, was determined at 15 and 30 min of reperfusion on the forearm using venous occlusion plethysmography. Expression of the proinflammatory markers CD11b, ICAM-1, PSGL-1, and L-selectin (CD62L) on leukocytes and P-selectin (CD62P), PSGL-1, and CD42b on platelets were measured by flow cytometry during reperfusion. RESULTS: Ischemia-reperfusion consistently reduced the postocclusive endothelium-dependent hyperemic reaction at 15 and 30 min of reperfusion. Periischemic inhalation of helium at 50 vol% did not improve postocclusive hyperemic reaction. Helium decreased expression of the proinflammatory marker CD11b and ICAM-1 on leukocytes and attenuated the expression of the procoagulant markers CD42b and PSGL-1 on platelets. CONCLUSIONS: Although inhalation of helium diminished the postischemic inflammatory reaction, our data indicate that human endothelium, which is a component of all vital organs, is not amenable to protection by helium at 50 vol% in vivo. This is in contrast to sevoflurane, which protects human endothelium at low subanesthetic concentrations.
Resumo:
The aim of this work is to relate the curing conditions of concrete and the addition of an air-entraining admixture with the damage caused by freeze–thaw cycles. In countries with a continental climate, the curing of concrete in summer is performed under climatic conditions of high temperature and low humidity, and during the winter the concrete suffers conditions of freeze–thaw, often accompanied by the use of de-icing salts. This paper shows the experimental results of the behaviour of concrete specimens cured under climatic summer conditions (high temperature and low humidity) and then subjected to freeze–thaw cycles. Curing of the specimens includes conditions of good and bad practice in relation to wetting and protection of the concrete. It also examines the effectiveness of using an air-entraining admixture in both cases. The experimental programme includes an evaluation of the mechanical properties of the concrete, the study of the cement hydration and the measurement of the volume and pore sizes of the concrete. These tests were performed before and after the application of the freeze–thaw cycles. The results obtained showed that the specimens without air-entraining admixture show a deterioration of mechanical properties after the freeze–thaw test. However, the inclusion of air bubbles benefits the behaviour of concrete against freeze–thaw cycles so even better mechanical properties after the test were observed. This anomalous behaviour is because the cement hydration process continues over the freeze–thaw tests, closing the pore structure. This aspect has been confirmed with the DTA and TG tests performed
Resumo:
The biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P) are interlinked by primary production, respiration and decomposition in terrestrial ecosystems. It has been suggested that the C, N and P cycles could become uncoupled under rapid climate change because of the different degrees of control exerted on the supply of these elements by biological and geochemical processes. Climatic controls on biogeochemical cycles are particularly relevant in arid, semi-arid and dry sub-humid ecosystems (drylands) because their biological activity is mainly driven by water availability. The increase in aridity predicted for the twenty-first century in many drylands worldwide may therefore threaten the balance between these cycles, differentially affecting the availability of essential nutrients. Here we evaluate how aridity affects the balance between C, N and P in soils collected from 224 dryland sites from all continents except Antarctica. We find a negative effect of aridity on the concentration of soil organic C and total N, but a positive effect on the concentration of inorganic P. Aridity is negatively related to plant cover, which may favour the dominance of physical processes such as rock weathering, a major source of P to ecosystems, over biological processes that provide more C and N, such as litter decomposition. Our findings suggest that any predicted increase in aridity with climate change will probably reduce the concentrations of N and C in global drylands, but increase that of P. These changes would uncouple the C, N and P cycles in drylands and could negatively affect the provision of key services provided by these ecosystems.
Resumo:
"This act takes effect upon becoming law, added by P.A. 86-1397, eff. Sept. 10, 1990."--p.6.