963 resultados para Potential models
Resumo:
Quantifying mass and energy exchanges within tropical forests is essential for understanding their role in the global carbon budget and how they will respond to perturbations in climate. This study reviews ecosystem process models designed to predict the growth and productivity of temperate and tropical forest ecosystems. Temperate forest models were included because of the minimal number of tropical forest models. The review provides a multiscale assessment enabling potential users to select a model suited to the scale and type of information they require in tropical forests. Process models are reviewed in relation to their input and output parameters, minimum spatial and temporal units of operation, maximum spatial extent and time period of application for each organization level of modelling. Organizational levels included leaf-tree, plot-stand, regional and ecosystem levels, with model complexity decreasing as the time-step and spatial extent of model operation increases. All ecosystem models are simplified versions of reality and are typically aspatial. Remotely sensed data sets and derived products may be used to initialize, drive and validate ecosystem process models. At the simplest level, remotely sensed data are used to delimit location, extent and changes over time of vegetation communities. At a more advanced level, remotely sensed data products have been used to estimate key structural and biophysical properties associated with ecosystem processes in tropical and temperate forests. Combining ecological models and image data enables the development of carbon accounting systems that will contribute to understanding greenhouse gas budgets at biome and global scales.
Resumo:
Antigen recognition by cytotoxic CD8 T cells is dependent upon a number of critical steps in MHC class I antigen processing including proteosomal cleavage, TAP transport into the endoplasmic reticulum, and MHC class 1 binding. Based on extensive experimental data relating to each of these steps there is now the capacity to model individual antigen processing steps with a high degree of accuracy. This paper demonstrates the potential to bring together models of individual antigen processing steps, for example proteosome cleavage, TAP transport, and MHC binding, to build highly informative models of functional pathways. In particular, we demonstrate how an artificial neural network model of TAP transport was used to mine a HLA-binding database so as to identify H LA-binding peptides transported by TAP. This integrated model of antigen processing provided the unique insight that HLA class I alleles apparently constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3, and -A24) and those that are TAP-inefficient (HLA-A2, -B7, and -B8). Hence, using this integrated model we were able to generate novel hypotheses regarding antigen processing, and these hypotheses are now capable of being tested experimentally. This model confirms the feasibility of constructing a virtual immune system, whereby each additional step in antigen processing is incorporated into a single modular model. Accurate models of antigen processing have implications for the study of basic immunology as well as for the design of peptide-based vaccines and other immunotherapies. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Models of warped extra dimensions with custodial symmetry usually predict the existence of a light Kaluza-Klein fermion arising as a partner of the right-handed top quark, sometimes called light custodians which we will denote (b) over tilde (R). The production of these particles at the LHC can give rise to multi-W events which could be observed in same-sign dilepton channels, but its mass reconstruction is challenging. In this paper we study the possibility of finding a signal for the pair production of this new particle at the LHC focusing on a rarer, but cleaner decay mode of a light custodian into a Z boson and a b-quark. In this mode it would be possible to reconstruct the light custodian mass. In addition to the dominant standard model QCD production processes, we include the contribution of a Kaluza-Klein gluon first mode. We find that (b) over tilde (R) stands out from the background as a peak in the bZ invariant mass. However, when taking into account only the electronic and muonic decay modes of the Z boson and b-tagging efficiencies, the LHC will have access only to the very light range of masses, m((b) over tilde) = O(500) GeV.
Resumo:
Excessive free-radical production due to various bacterial components released during bacterial infection has been linked to cell death and tissue injury. Peroxynitrite is a highly reactive oxidant produced by the combination of nitric oxide (NO) and superoxide anion, which has been implicated in cell death and tissue injury in various forms of critical illness. Pharmacological decomposition of peroxynitrite may represent a potential therapeutic approach in diseases associated with the overproduction of NO and superoxide. In the present study, we tested the effect of a potent peroxynitrite decomposition catalyst in murine models of endotoxemia and sepsis. Mice were injected i.p. with LPS 40 mg/kg with or without FP15 [Fe(III) tetrakis-2-(N-triethylene glycol monomethyl ether) pyridyl porphyrin] (0.1, 0.3, 1, 3, or 10 mg/kg per hour). Mice were killed 12 h later, followed by the harvesting of samples from the lung, liver, and gut for malondialdehyde and myeloperoxidase measurements. In other subsets of animals, blood samples were obtained by cardiac puncture at 1.5, 4, and 8 h after LPS administration for cytokine (TNF-alpha, IL-1 beta, and IL-10), nitrite/nitrate, alanine aminotransferase, and blood urea nitrogen measurements. Endotoxemic animals showed an increase in survival from 25% to 80% at the FP15 doses of 0.3 and 1 mg/kg per hour. The same dose of FP15 had no effect on plasma levels of nitrite/nitrate. There was a reduction in liver and lung malondialdehyde in the endotoxemic animals pretreated with FP15, as well as in hepatic myeloperoxidase and biochemical markers of liver and kidney damage (alanine aminotransferase and blood urea nitrogen). In a bacterial model of sepsis induced by cecal ligation and puncture, FP15 treatment (0.3 mg/kg per day) significantly protected against mortality. The current data support the view that peroxynitrite is a critical factor mediating liver, gut, and lung injury in endotoxemia and septic shock: its pharmacological neutralization may be of therapeutic benefit.
Resumo:
P>Progress in understanding the pathophysiology of abdominal aortic aneurysms (AAA) is dependent in part on the development and application of effective animal models that recapitulate key aspects of the disease. The objective was to produce an experimental model of AAA in rats by combining two potential causes of metalloproteinase (MMP) secretion: inflammation and turbulent blood flow. Male Wistar rats were randomly divided in four groups: Injury, Stenosis, Aneurysm and Control (40/group). The Injury group received a traumatic injury to the external aortic wall. The Stenosis group received an extrinsic stenosis at a corresponding location. The Aneurysm group received both the injury and stenosis simultaneously, and the Control group received a sham operation. Animals were euthanized at days 1, 3, 7 and 15. Aorta and/or aneurysms were collected and the fragments were fixed for morphologic, immunohistochemistry and morphometric analyses or frozen for MMP assays. AAAs had developed by day 3 in 60-70% of the animals, reaching an aortic dilatation ratio of more than 300%, exhibiting intense wall remodelling initiated at the adventitia and characterized by an obvious inflammatory infiltrate, mesenchymal proliferation, neoangiogenesis, elastin degradation and collagen deposition. Immunohistochemistry and zymography studies displayed significantly increased expressions of MMP-2 and MMP-9 in aneurysm walls compared to other groups. The haemo-dynamic alterations caused by the stenosis may have provided additional contribution to the MMPs liberation. This new model illustrated that AAA can be multifactorial and confirmed the key roles of MMP-2 and MMP-9 in this dynamic remodelling process.
Resumo:
The endocannabinoid anandamide is a possible agonist at the Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel, in addition to its agonist activity at cannabinoid type 1 (CB1) receptor. In the midbrain dorsolateral periaqueductal gray (dlPAC) our previous data showed that CB1 activation induces anxiolytic-like effects. However, the rote of TRPV1 has remained unclear. Thus, in the present study we tested the hypothesis that this channel would contribute to the modulation of anxiety-like behaviour in the dlPAG. Mate Wistar rats received local injections of the TRPV1 antagonist capsazepine (10-60 nmol) and were submitted to the elevated plus-maze (EPM) and to the Vogel test. In addition, animals received local injections of capsaicin (0.01-1nmol), a TRPV1 agonist, and were tested in the same models. In accordance with our hypothesis, capsazepine produced anxiolytic-like effects both in the EPM and in the Vogel test. Capsaicin mimicked these results, which might be attributed to its ability to quickly desensitize the channel. Altogether, our data suggest that, while CB1 receptors seem to inhibit aversive responses in the dlPAG, TRPV1 could facilitate them. Thus, CB1 and TRPV1 may have opposite functions in modulating anxiety-like behaviour in this region. (C) 2008 Elsevier B.V. and ECNP. All rights reserved.
Resumo:
Objective. To analyze, through mathematical modeling, the potential ability of sterilization campaigns to reduce the population density of pet dogs. Methods. Mathematical models were constructed to simulate the canine population dynamics and project the results of control strategies based on several sterilization rates. Results. Even at high sterilization rates (for example, 0.80 year(-1)), it would take approximately 5 years to reduce density by 20%. Even so, other sources of population growth, such as the importing of dogs from other geographic areas, could outweigh the effects of a sterilization program. Conclusions. A program`s effectiveness is contingent upon not only on the sterilization rate, but also the rate of population growth. Sterilization campaigns may potentially reduce population density, but this reduction may not be immediately evident.
Resumo:
Permanent hearing loss is a leading global health care burden, with 1 in 10 people affected to a mild or greater degree. A shortage of trained healthcare professionals and associated infrastructure and resource limitations mean that hearing health services are unavailable to the majority of the world population. Utilizing information and communication technology in hearing health care, or tele-audiology, combined with automation offer unique opportunities for improved clinical care, widespread access to services, and more cost-effective and sustainable hearing health care. Tele-audiology demonstrates significant potential in areas such as education and training of hearing health care professionals, paraprofessionals, parents, and adults with hearing disorders; screening for auditory disorders; diagnosis of hearing loss; and intervention services. Global connectivity is rapidly growing with increasingly widespread distribution into underserved communities where audiological services may be facilitated through telehealth models. Although many questions related to aspects such as quality control, licensure, jurisdictional responsibility, certification and reimbursement still need to be addressed; no alternative strategy can currently offer the same potential reach for impacting the global burden of hearing loss in the near and foreseeable future.
Resumo:
We use published and new trace element data to identify element ratios which discriminate between arc magmas from the supra-subduction zone mantle wedge and those formed by direct melting of subducted crust (i.e. adakites). The clearest distinction is obtained with those element ratios which are strongly fractionated during refertilisation of the depleted mantle wedge, ultimately reflecting slab dehydration. Hence, adakites have significantly lower Pb/Nd and B/Be but higher Nb/Ta than typical arc magmas and continental crust as a whole. Although Li and Be are also overenriched in continental crust, behaviour of Li/Yb and Be/Nd is more complex and these ratios do not provide unique signatures of slab melting. Archaean tonalite-trondhjemite-granodiorites (TTGs) strongly resemble ordinary mantle wedge-derived arc magmas in terms of fluid-mobile trace element content, implying that they-did not form by slab melting but that they originated from mantle which was hydrated and enriched in elements lost from slabs during prograde dehydration. We suggest that Archaean TTGs formed by extensive fractional crystallisation from a mafic precursor. It is widely claimed that the time between the creation and subduction of oceanic lithosphere was significantly shorter in the Archaean (i.e. 20 Ma) than it is today. This difference was seen as an attractive explanation for the presumed preponderance of adakitic magmas during the first half of Earth's history. However, when we consider the effects of a higher potential mantle temperature on the thickness of oceanic crust, it follows that the mean age of oceanic lithosphere has remained virtually constant. Formation of adakites has therefore always depended on local plate geometry and not on potential mantle temperature.
Resumo:
Selective superoxide dismutase (SOD) mimetics are potentially useful in pathological conditions in which there is an overproduction of the superoxide anion O-2.(-). These pathological conditions include inflammation, ischemia/reperfusion, shock, various cardiovascular disorders, amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. A major step forward in this field was the development of small-molecule selective SOD mimetics that penetrate cell membranes, These selective SOD mimetics catalytically remove O-2.(-) without interfering with nitric oxide (NO), peroxynitrite (ONOO-) or other radicals such as hydroxyl radical or hydrogen peroxide (H2O2). These selective SOD mimetics (SC-52608, SC-55858, M-40403 and M-40401) have been shown to have benefits in animal models of inflammation, ischemia/reperfusion, shock, thrombosis and diabetes. The next challenge with selective SOD mimetics is to develop therapeutic potential into therapeutic agents.
Resumo:
Clinical trials have established bosentan, an orally active non-selective endothelin (ET) receptor antagonist, as a beneficial treatment in pulmonary hypertension. Trials have also shown short-term benefits of bosentan in systemic hypertension and congestive heart failure. However, bosentan also increased plasma levels of ET-1, probably by inhibiting the clearance of ET-1 by endothelin type B (ET.) receptors, and this may mean its effectiveness is reduced with long-term clinical use. Preliminary data suggests that selective endothelin type A (ETA) receptor antagonists (BQ-123, sitaxsentan) may be more beneficial than the non-selective ET receptor antagonists in heart failure, especially when the failure is associated with pulmonary hypertension. Experimental evidence in animal disease models suggests that non-selective ET or selective ETA receptor antagonism may have a role in the treatment of athero-sclerosis, restenosis, myocarditis, shock and portal hypertension. In animal models of myocardial infarction and/or reperfusion injury, non-selective ET or selective ETA receptor antagonists have beneficial or detrimental effects depending on the conditions and agents used. Thus clinical trials of the nonselective ET or selective ETA receptor antagonists in these conditions are not presently warranted. Several selective endothelin-converting enzyme inhibitors tors have been synthesised recently, and these are only beginning to be tested in animal models of cardiovascular disease, and thus the clinical potential of these inhibitors is still to be defined.
Resumo:
Despite the strong influence of plant architecture on crop yield, most crop models either ignore it or deal with it in a very rudimentary way. This paper demonstrates the feasibility of linking a model that simulates the morphogenesis and resultant architecture of individual cotton plants with a crop model that simulates the effects of environmental factors on critical physiological processes and resulting yield in cotton. First the varietal parameters of the models were made concordant. Then routines were developed to allocate the flower buds produced each day by the crop model amongst the potential positions generated by the architectural model. This allocation is done according to a set of heuristic rules. The final weight of individual bolls and the shedding of buds and fruit caused by water, N, and C stresses are processed in a similar manner. Observations of the positions of harvestable fruits, both within and between plants, made under a variety of agronomic conditions that had resulted in a broad range of plant architectures were compared to those predicted by the model with the same environmental inputs. As illustrated by comparisons of plant maps, the linked models performed reasonably well, though performance of the fruiting point allocation and shedding algorithms could probably be improved by further analysis of the spatial relationships of retained fruit. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In Part 1 of this paper a methodology for back-to-back testing of simulation software was described. Residuals with error-dependent geometric properties were generated. A set of potential coding errors was enumerated, along with a corresponding set of feature matrices, which describe the geometric properties imposed on the residuals by each of the errors. In this part of the paper, an algorithm is developed to isolate the coding errors present by analysing the residuals. A set of errors is isolated when the subspace spanned by their combined feature matrices corresponds to that of the residuals. Individual feature matrices are compared to the residuals and classified as 'definite', 'possible' or 'impossible'. The status of 'possible' errors is resolved using a dynamic subset testing algorithm. To demonstrate and validate the testing methodology presented in Part 1 and the isolation algorithm presented in Part 2, a case study is presented using a model for biological wastewater treatment. Both single and simultaneous errors that are deliberately introduced into the simulation code are correctly detected and isolated. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
We consider the quark sector of theories containing three scalar SU(2)(L) doublets in the triplet representation of A(4) (or S-4) and three generations of quarks in arbitrary A(4) (or S-4) representations. We show that for all possible choices of quark field representations and for all possible alignments of the Higgs vacuum expectation values that can constitute global minima of the scalar potential, it is not possible to obtain simultaneously nonvanishing quark masses and a nonvanishing CP-violating phase in the Cabibbo-Kobayashi-Maskawa quark mixing matrix. As a result, in this minimal form, models with three scalar fields in the triplet representation of A(4) or S-4 cannot be extended to the quark sector in a way consistent with experiment. DOI: 10.1103/PhysRevD.87.055010.
Resumo:
Introduction: 188Re is a promising radionuclide for metabolic therapy because of the emission of high energy beta-particles. The development of watersoluble bone-seeking polymers such as PEI-MP (polyethyleneimine, functionalised with methylphosphonate-groups) that might be labeled with 188Re are recent approaches, with a strong potential for bone cancer treatment. The aim of this study was to evaluate the efficacy of 188Re-PEI-MP, as therapeutic agent for osteosarcoma, through in vitro and in vivo models.