903 resultados para Polymer-Ceramic Composites


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Debonding of Shape Memory Alloy (SMA) wires in SMA reinforced polymer matrix composites is a complex phenomenon compared to other fabric fiber debonding in similar matrix composites. This paper focuses on experimental study and analytical correlation of stress required for debonding of thermal SMA actuator wire reinforced composites. Fiber pull-out tests are carried out on thermal SMA actuator at parent state to understand the effect of stress induced detwinned martensites. An ASTM standard is followed as benchmark method for fiber pull-out test. Debonding stress is derived with the help of non-local shear-lag theory applied to elasto-plastic interface. Furthermore, experimental investigations are carried out to study the effect of Laser shot peening on SMA surface to improve the interfacial strength. Variation in debonding stress due to length of SMA wire reinforced in epoxy are investigated for non-peened and peened SMA wires. Experimental results of interfacial strength variation due to various L/d ratio for non-peened and peened SMA actuator wires in epoxy matrix are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ionic polymer metal composites (IPMC) actuator for flapping insect scale wing is advantageous due to its low mass, high deflection and simple actuation mechanism. Some of the factors that affect the actuation of IPMC are the amount of hydration in the polymer membrane and the environmental conditions such as temperature, humidity etc. In structural design, the attachment of wing on the IPMC actuators is an important concern as the attached wing increases the mass of actuators thereby affecting the parameters like displacement, stiffness and resonant frequencies. Such IPMC actuators have to produce sufficient actuation force and frequency to lift and flap the attached wing. Therefore, it is relevant to study the influence of attachment of wing on the actuator parameters (displacement, resonant frequency, block force and stiffness) and performance of the actuators. This paper is divided into two parts; the first part deals with the modeling of the IPMC actuators for its effect on the level of water uptake and temperature using energy based method. The modeling method adapted is validated with the experimental procedure used to actuate the IPMC. The second part deals with the experimental analysis of IPMC actuation at dry, wet and in water conditions. The effect of end mass loading on the performance of 20 Hz, high frequency actuator (HFA) and 8.7 Hz, low frequency IPMC actuators (LFA) and sensors is studied. The IPMC actuators are attached with IPMC flapping wing at its free end and performance analysis on the attached wing is also carried out.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study systematically investigates the phenomenon of internal clamping in ferroelectric materials through the formation of glass-ceramic composites. Lead-free 0.715Bi(0.5)Na(0.5)TiO(3)-0.065BaTiO(3)-0.22SrTiO(3) (BNT-BT-ST) bulk ferroelectric ceramic was selected for the course of investigation. 3BaO - 3TiO(2) - B2O3 (BTBO) glass was then incorporated systematically to create sintered samples containing 0%, 2%, 4% and 6% glass (by weight). Upon glass induction features like remnant polarization, saturation polarization, hysteresis losses and coercive field could be varied as a function of glass content. Such effects were observed to benefit derived applications like enhanced energy storage density similar to 174 k J/m(3) to similar to 203 k J/m(3) and pyroelectric coefficient 5.7x10(-4) Cm-2K-1 to 6.8x10(-4) Cm-2K-1 by incorporation of 4% glass. Additionally, BNT-BT-ST depolarization temperature decreased from 457K to 431K by addition of 4% glass content. Glass incorporation could systematically increases diffuse phase transition and relaxor behavior temperature range from 70 K to 81K and 20K to 34 K, respectively when 6% and 4% glass content is added which indicates addition of glass provides better temperature stability. The most promising feature was observed to be that of dielectric response tuning. It can be also used to control (to an extent) the dielectric behavior of the host ceramic. Dielectric permittivity and losses decreased from 1278 to 705 and 0.109 to 0.107 for 6% glass, at room temperature. However this reduction in dielectric constant and loss increases pyroelectric figures of merit (FOMs) for high voltage responsivity (F-v) high detectivity (F-d) and energy harvesting (F-e) from 0.018 to 0.037 m(2)C(-1), 5.89 to 8.85 mu Pa-1/2 and 28.71 to 61.55 Jm(-3)K(-2), respectively for 4% added ceramic-glass at room temperature. Such findings can have huge implications in the field of tailoring ferroelectric response for application specific requirements. (C) 2015 Author(s).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We measured the wear resistances of alumina, alumina/silicon carbide composite and alumina/mullite composite by abrasive wear. And we studied the influence of fracture mode and worn surface pullout on wear resistance. The results are as follows: the main wear mechanisms of alumina and alumina/silicon carbide were fracture wear and plastic wear respectively, and for alumina/mullite composite, fracture wear and plastic wear mechanisms worked together. The wear resistance of the alumina/silicon carbide composite and the alumina/mullite composite was better by a factor of 1 similar to 3 than that of the monolithic alumina. There were two main reasons for the better wear resistance, i.e., the improved mechanical properties and the more smooth worn surfaces. However, The primary reason was the reduction of area fraction of pullout on the worn surfaces induced by fracture mode transition. (C) 2007 Published by Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experimental observations on micromorphologies around broken fibers in glass-fiber-reinforced epoxy matrix composites reveal different kinds of highly oriented patches at the circumambience of broken fibers, whereas the bulk of the matrix has been observed to be largely isotropic. These patches are interpreted to correlated areas where the stress gradients of the matrix are formed after fiber breaking, but the underlying cause for the orientation is still unknown. The authors have modified an embedded cell model to explain the experimental phenomena. The finite element simulation indicates that the surfaces around broken fibers display a change from an extension micromorphology to a mixed tension and shear micromorphology with the increase of applied strain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrospinning was employed to fabricate polymer-ceramic composite fibers from solutions containing poly(vinyl pyrrolidone) (PVP), Ce(NO3)(3)(.)6H(2)O and ZrOCl2-8H(2)O. Upon firing the composite fibers at 1000 degrees C, Ce(0.67)Zr(0.33)O(2)fibers with diameters ranging from 0.4 to 2 mu m were synthesized. These fibers exhibit strong resistance to sintering. They still have specific surface area around 11.8 m(2)/g after being heated at 1000 degrees C for 6 h.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Electrospinning was employed to fabricate polymer-ceramic composite fibers from solutions containing polyvinyl pyrrolidone (PVP) and In(NO3)(3)center dot 4(1)/2H2O. Upon firing the composite fibers at 800 degrees C, In2O3 fibers with diameters ranging from 200 to 400 nm were synthesized. This indium oxide calcined at 800 degrees C is a body-centered cubic cell. The photoluminescence (PL) properties of the as-formed In2O3 nanofibers were investigated. The In2O3 nanofibers show a strong PL emission in the ultraviolet (UV) region under shorter UV light irradiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel amperometric glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of glucose oxidase (GOD) on the surface of a horseradish peroxidase (HRP) modified ferrocenecarboxylic acid (FCA) mediated sol-gel derived ceramic carbon electrode. The amperometric detection of glucose was carried out at +0.16 V (vs. SCE) in 0.1 mol/L phosphate buffer solution (pH 6.9) with a linear response range between 8.0x10(-5) and 1.3x10(-3) mol/L of glucose. The biosensor showed a good suppression of interference and a negligible deviation in the amperometric detection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present study, an attempt has been made to prepare composites by incorporating expanded graphite fillers in insulating elastomer matrices and to study its DC electrical conductivity, dielectric properties and electromagnetic shielding characteristics, in addition to evaluating the mechanical properties. Recently, electronic devices and components have been rapidly developing and advancing. Thus, with increased usage of electronic devices, electromagnetic waves generated by electronic systems can potentially create serious problems such as malfunctions of medical apparatus and industry robots and can even cause harm to the human body. Therefore, in this work the applicable utility of the prepared composites as electromagnetic interference (EMI) shielding material are also investigated. The dissertation includes nine chapters

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)