957 resultados para Points distribution in high dimensional space


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this work is to learn a parsimonious and informative representation for high-dimensional time series. Conceptually, this comprises two distinct yet tightly coupled tasks: learning a low-dimensional manifold and modeling the dynamical process. These two tasks have a complementary relationship as the temporal constraints provide valuable neighborhood information for dimensionality reduction and conversely, the low-dimensional space allows dynamics to be learnt efficiently. Solving these two tasks simultaneously allows important information to be exchanged mutually. If nonlinear models are required to capture the rich complexity of time series, then the learning problem becomes harder as the nonlinearities in both tasks are coupled. The proposed solution approximates the nonlinear manifold and dynamics using piecewise linear models. The interactions among the linear models are captured in a graphical model. By exploiting the model structure, efficient inference and learning algorithms are obtained without oversimplifying the model of the underlying dynamical process. Evaluation of the proposed framework with competing approaches is conducted in three sets of experiments: dimensionality reduction and reconstruction using synthetic time series, video synthesis using a dynamic texture database, and human motion synthesis, classification and tracking on a benchmark data set. In all experiments, the proposed approach provides superior performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this work is to learn a parsimonious and informative representation for high-dimensional time series. Conceptually, this comprises two distinct yet tightly coupled tasks: learning a low-dimensional manifold and modeling the dynamical process. These two tasks have a complementary relationship as the temporal constraints provide valuable neighborhood information for dimensionality reduction and conversely, the low-dimensional space allows dynamics to be learnt efficiently. Solving these two tasks simultaneously allows important information to be exchanged mutually. If nonlinear models are required to capture the rich complexity of time series, then the learning problem becomes harder as the nonlinearities in both tasks are coupled. The proposed solution approximates the nonlinear manifold and dynamics using piecewise linear models. The interactions among the linear models are captured in a graphical model. The model structure setup and parameter learning are done using a variational Bayesian approach, which enables automatic Bayesian model structure selection, hence solving the problem of over-fitting. By exploiting the model structure, efficient inference and learning algorithms are obtained without oversimplifying the model of the underlying dynamical process. Evaluation of the proposed framework with competing approaches is conducted in three sets of experiments: dimensionality reduction and reconstruction using synthetic time series, video synthesis using a dynamic texture database, and human motion synthesis, classification and tracking on a benchmark data set. In all experiments, the proposed approach provides superior performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MOTIVATION: Technological advances that allow routine identification of high-dimensional risk factors have led to high demand for statistical techniques that enable full utilization of these rich sources of information for genetics studies. Variable selection for censored outcome data as well as control of false discoveries (i.e. inclusion of irrelevant variables) in the presence of high-dimensional predictors present serious challenges. This article develops a computationally feasible method based on boosting and stability selection. Specifically, we modified the component-wise gradient boosting to improve the computational feasibility and introduced random permutation in stability selection for controlling false discoveries. RESULTS: We have proposed a high-dimensional variable selection method by incorporating stability selection to control false discovery. Comparisons between the proposed method and the commonly used univariate and Lasso approaches for variable selection reveal that the proposed method yields fewer false discoveries. The proposed method is applied to study the associations of 2339 common single-nucleotide polymorphisms (SNPs) with overall survival among cutaneous melanoma (CM) patients. The results have confirmed that BRCA2 pathway SNPs are likely to be associated with overall survival, as reported by previous literature. Moreover, we have identified several new Fanconi anemia (FA) pathway SNPs that are likely to modulate survival of CM patients. AVAILABILITY AND IMPLEMENTATION: The related source code and documents are freely available at https://sites.google.com/site/bestumich/issues. CONTACT: yili@umich.edu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High school dropout is commonly seen as the result of a long-term process of failure and disengagement. As useful as it is, this view has obscured the heterogeneity of pathways leading to dropout. Research suggests, for instance, that some students leave school not as a result of protracted difficulties but in response to situations that emerge late in their schooling careers, such as health problems or severe peer victimization. Conversely, others with a history of early difficulties persevere when their circumstances improve during high school. Thus, an adequate understanding of why and when students drop out requires a consideration of both long-term vulnerabilities and proximal disruptive events and contingencies. The goal of this review is to integrate long-term and immediate determinants of dropout by proposing a stress process, life course model of dropout. This model is also helpful for understanding how the determinants of dropout vary across socioeconomic conditions and geographical and historical contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blanket peatlands are rain-fed mires that cover the landscape almost regardless of topography. The geographical extent of this type of peatland is highly sensitive to climate. We applied a global process-based bioclimatic envelope model, PeatStash, to predict the distribution of British blanket peatlands. The model captures the present areal extent (Kappa = 0.77) and is highly sensitive to both temperature and precipitation changes. When the model is run using the UKCIP02 climate projections for the time periods 2011–2040, 2041–2070 and 2071–2100, the geographical distribution of blanket peatlands gradually retreats towards the north and the west. In the UKCIP02 high emissions scenario for 2071–2100, the blanket peatland bioclimatic space is ~84% smaller than contemporary conditions (1961–1990); only parts of the west of Scotland remain inside this space. Increasing summer temperature is the main driver of the projected changes in areal extent. Simulations using 7 climate model outputs resulted in generally similar patterns of declining aereal extent of the bioclimatic space, although differing in degree. The results presented in this study should be viewed as a first step towards understanding the trends likely to affect the blanket peatland distribution in Great Britain. The eventual fate of existing blanket peatlands left outside their bioclimatic space remains uncertain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the introduction of new observing systems based on asynoptic observations, the analysis problem has changed in character. In the near future we may expect that a considerable part of meteorological observations will be unevenly distributed in four dimensions, i.e. three dimensions in space and one in time. The term analysis, or objective analysis in meteorology, means the process of interpolating observed meteorological observations from unevenly distributed locations to a network of regularly spaced grid points. Necessitated by the requirement of numerical weather prediction models to solve the governing finite difference equations on such a grid lattice, the objective analysis is a three-dimensional (or mostly two-dimensional) interpolation technique. As a consequence of the structure of the conventional synoptic network with separated data-sparse and data-dense areas, four-dimensional analysis has in fact been intensively used for many years. Weather services have thus based their analysis not only on synoptic data at the time of the analysis and climatology, but also on the fields predicted from the previous observation hour and valid at the time of the analysis. The inclusion of the time dimension in objective analysis will be called four-dimensional data assimilation. From one point of view it seems possible to apply the conventional technique on the new data sources by simply reducing the time interval in the analysis-forecasting cycle. This could in fact be justified also for the conventional observations. We have a fairly good coverage of surface observations 8 times a day and several upper air stations are making radiosonde and radiowind observations 4 times a day. If we have a 3-hour step in the analysis-forecasting cycle instead of 12 hours, which is applied most often, we may without any difficulties treat all observations as synoptic. No observation would thus be more than 90 minutes off time and the observations even during strong transient motion would fall within a horizontal mesh of 500 km * 500 km.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe several families of Lagrangian submanifolds in complex Euclidean space which are H-minimal, i.e. critical points of the volume functional restricted to Hamiltonian variations. We make use of various constructions involving planar, spherical and hyperbolic curves, as well as Legendrian submanifolds of the odd-dimensional unit sphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of using solar energy during winter depends on the available solar radiation and on the geometry of the receiving surface. For high latitudes, the annual distribution of the available radiation is characterized by high asymmetry with a large amount of solar radiation from high altitude angles during the summer and a small amount of direct radiation from small altitude angles during the winter. This article deals with the origin of the difference between available solar radiation during summer and winter at high latitudes. Factors like the tilt of the earth’s axis, the eccentricity of the earth’s orbit, absorption and scattering of radiation in the atmosphere and seasonal changes in the weather conditions are discussed. Numerical examples of how these factors contribute to the reduction of the winter radiation compared to the summer radiation on surfaces with different orientation in Stockholm, latitude 59.4°N, are given. It is shown that the influence of the atmosphere and seasonal changes in the climate, and not pure earth-sun geometry, are the main reasons why it is hard to utilize solar energy at high latitudes during the winter.