986 resultados para Point Common Coupling
Resumo:
Summary Reasons for performing study: Metabonomics is emerging as a powerful tool for disease screening and investigating mammalian metabolism. This study aims to create a metabolic framework by producing a preliminary reference guide for the normal equine metabolic milieu. Objectives: To metabolically profile plasma, urine and faecal water from healthy racehorses using high resolution 1H-NMR spectroscopy and to provide a list of dominant metabolites present in each biofluid for the benefit of future research in this area. Study design: This study was performed using seven Thoroughbreds in race training at a single time-point. Urine and faecal samples were collected non-invasively and plasma was obtained from samples taken for routine clinical chemistry purposes. Methods: Biofluids were analysed using 1H-NMR spectroscopy. Metabolite assignment was achieved via a range of 1D and 2D experiments. Results: A total of 102 metabolites were assigned across the three biological matrices. A core metabonome of 14 metabolites was ubiquitous across all biofluids. All biological matrices provided a unique window on different aspects of systematic metabolism. Urine was the most populated metabolite matrix with 65 identified metabolites, 39 of which were unique to this biological compartment. A number of these were related to gut microbial host co-metabolism. Faecal samples were the most metabolically variable between animals; acetate was responsible for the majority (28%) of this variation. Short chain fatty acids were the predominant features identified within this biofluid by 1H-NMR spectroscopy. Conclusions: Metabonomics provides a platform for investigating complex and dynamic interactions between the host and its consortium of gut microbes and has the potential to uncover markers for health and disease in a variety of biofluids. Inherent variation in faecal extracts along with the relative abundance of microbial-mammalian metabolites in urine and invasive nature of plasma sampling, infers that urine is the most appropriate biofluid for the purposes of metabonomic analysis.
Resumo:
Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000–2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October–January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo–Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of secondary inorganic aerosol are suppressed in the models because relative humidity (RH) is biased far too low in the boundary layer and thus foggy conditions are poorly represented in current models, the nitrate aerosol is either missing or inadequately accounted for, and emissions from agricultural waste burning and biofuel usage are too low in the emission inventories. These common problems and possible causes found in multiple models point out directions for future model improvements in this important region.
Resumo:
Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a fixed measurement location may not represent the true evolution if there are spatial variations in the formation and growth rates. Here we present a zero-dimensional aerosol box model coupled with one-dimensional atmospheric flow to describe the impact of advection on the evolution of simulated new particle formation events. Wind speed, particle formation rates and growth rates are input parameters that can vary as a function of time and location, using wind speed to connect location to time. The output simulates measurements at a fixed location; formation and growth rates of the particle mode can then be calculated from the simulated observations at a stationary point for different scenarios and be compared with the ‘true’ input parameters. Hence, we can investigate how spatial variations in the formation and growth rates of new particles would appear in observations of particle number size distributions at a fixed measurement site. We show that the particle size distribution and growth rate at a fixed location is dependent on the formation and growth parameters upwind, even if local conditions do not vary. We also show that different input parameters used may result in very similar simulated measurements. Erroneous interpretation of observations in terms of particle formation and growth rates, and the time span and areal extent of new particle formation, is possible if the spatial effects are not accounted for.
Resumo:
An important production programming problem arises in paper industries coupling multiple machine scheduling with cutting stocks. Concerning machine scheduling: how can the production of the quantity of large rolls of paper of different types be determined. These rolls are cut to meet demand of items. Scheduling that minimizes setups and production costs may produce rolls which may increase waste in the cutting process. On the other hand, the best number of rolls in the point of view of minimizing waste may lead to high setup costs. In this paper, coupled modeling and heuristic methods are proposed. Computational experiments are presented.
Resumo:
A continuous version of the hierarchical spherical model at dimension d=4 is investigated. Two limit distributions of the block spin variable X(gamma), normalized with exponents gamma = d + 2 and gamma=d at and above the critical temperature, are established. These results are proven by solving certain evolution equations corresponding to the renormalization group (RG) transformation of the O(N) hierarchical spin model of block size L(d) in the limit L down arrow 1 and N ->infinity. Starting far away from the stationary Gaussian fixed point the trajectories of these dynamical system pass through two different regimes with distinguishable crossover behavior. An interpretation of this trajectories is given by the geometric theory of functions which describe precisely the motion of the Lee-Yang zeroes. The large-N limit of RG transformation with L(d) fixed equal to 2, at the criticality, has recently been investigated in both weak and strong (coupling) regimes by Watanabe (J. Stat. Phys. 115:1669-1713, 2004) . Although our analysis deals only with N = infinity case, it complements various aspects of that work.
Resumo:
We explicitly construct a stationary coupling attaining Ornstein`s (d) over bar -distance between ordered pairs of binary chains of infinite order. Our main tool is a representation of the transition probabilities of the coupled bivariate chain of infinite order as a countable mixture of Markov transition probabilities of increasing order. Under suitable conditions on the loss of memory of the chains, this representation implies that the coupled chain can be represented as a concatenation of i.i.d. sequences of bivariate finite random strings of symbols. The perfect simulation algorithm is based on the fact that we can identify the first regeneration point to the left of the origin almost surely.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work we have studied the effects of random biquadratic and random fields in spin-glass models using the replica method. The effect of a random biquadratic coupling was studied in two spin-1 spin-glass models: in one case the interactions occur between pairs of spins, whereas in the second one the interactions occur between p spins and the limit p > oo is considered. Both couplings (spin glass and biquadratic) have zero-mean Gaussian probability distributions. In the first model, the replica-symmetric assumption reveals that the system presents two pha¬ses, namely, paramagnetic and spin-glass, separated by a continuous transition line. The stability analysis of the replica-symmetric solution yields, besides the usual instability associated with the spin-glass ordering, a new phase due to the random biquadratic cou¬plings between the spins. For the case p oo, the replica-symmetric assumption yields again only two phases, namely, paramagnetic and quadrupolar. In both these phases the spin-glass parameter is zero. Besides, it is shown that they are stable under the Almeida-Thouless stability analysis. One of them presents negative entropy at low temperatures. We developed one step of replica simmetry breaking and noticed that a new phase, the biquadratic glass phase, emerge. In this way we have obtained the correct phase diagram, with.three first-order transition lines. These lines merges in a common triple point. The effects of random fields were studied in the Sherrington-Kirkpatrick model consi¬dered in the presence of an external random magnetic field following a trimodal distribu¬tion {P{hi) = p+S(hi - h0) +Po${hi) +pS(hi + h0))- It is shown that the border of the ferromagnetic phase may present, for conveniently chosen values of p0 and hQ, first-order phase transitions, as well as tricritical points at finite temperatures. It is verified that the first-order phase transitions are directly related to the dilution in the fields: the extensions of these transitions are reduced for increasing values of po- In fact, the threshold value pg, above which all phase transitions are continuous, is calculated analytically. The stability analysis of the replica-symmetric solution is performed and the regions of validity of such a solution are identified
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Plant extracts are some of the most attractive sources of new drugs and have shown promising results for the treatment of gastric ulcers. Several folk medicinal plants and herbs have been used to treat gastrointestinal disorders, including gastric ulcers. Mammea americana L. (Guttiferae) fruit is very common in the diet of the population of northern South America. Our research interest in this plant arose because of its potential medicinal value as a tonic and against stomachache, as used in folk medicine. In this paper we evaluated three different extracts (ethanolic/EtOH, methanolic/MeOH and dichloromethane/DCM) obtained from M. americana L., for their ability to protect the gastric mucosa against injuries caused by necrotizing agents (0.3 M HCI/60% EtOH), hypothermic restraint stress, nonsteroidal anti-inflammatory drugs (NSAID, indomethacin) and pylorus ligation. In the HCI/EtOH-induced gastriculcer model, EtOH and DCM extracts demonstrated significant inhibition of the ulcerative lesion index by 54% (12.0 +/- 2.6 mm) and 86% (3.7 +/- 1.8 mm), respectively, in relation to the control value (26.0 +/- 1.4 mm) (p < 0.000 1). In the NSAID/cholinomimetic-induced lesion model, both EtOH and DCM extracts showed antiulcerogenic effects with significant reduction in the damage to these gastric lesions of 36% (8.3 +/- 2.0 mm) and 42% (7.5 +/- 1.4 mm), respectively, as compared to the control group (13.0 +/- 0.9 mm) (p < 0.0001). In the gastric ulcer induced by hypothermic-restraint stress, both extracts also showed significant activity, and inhibited the gastric lesion index by 58% and 75%, respectively. The EtOH and DCM extracts also changed gastric juice parameters as well as those of cimetidine, decreased gastric acid secretion significantly (p < 0.0001), increased pH values and promoted reduced acid output (p < 0.0001). In all gastric-ulcer-induced models, MeOH extract did not show any significant antiulcerogenic activity, nor did it change gastric-juice parameters (p > 0.05). The results suggest that EtOH and DCM extracts obtained from M. americana possess excellent antisecretory and/or gastrotective effect in all gastric ulcer models. These results suggest that the antiulcerogenic compound(s) present in M. americana may be clustered in the apolar fraction, which will be investigated by our group for the probable mechanisms of action. (c) 2004 Elsevier GmbH. All rights reserved.
Resumo:
Here we address the problem of bosonizing massive fermions without making expansions in the fermion masses in both massive QED(2) and QED(3) with N fermion flavors including also a Thirring coupling. We start from two-point correlators involving the U(1) fermionic current and the gauge field. From the tensor structure of those correlators we prove that the U(1) current must be identically conserved (topological) in the corresponding bosonized theory in both D=2 and D=3 dimensions. We find an effective generating functional in terms of bosonic fields which reproduces these two-point correlators and from that we obtain a map of the Lagrangian density (ψ) over bar (r)(ipartial derivative-m)psi(r) into a bosonic one in both dimensions. This map is nonlocal but it is independent of the electromagnetic and Thirring couplings, at least in the quadratic approximation for the fermionic determinant.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The condition for the global minimum of the vacuum energy for a non-Abelian gauge theory with a dynamically generated gauge boson mass scale which implies the existence of a nontrivial IR fixed point of the theory was shown. Thus, this vacuum energy depends on the dynamical masses through the nonperturbative propagators of the theory. The results show that the freezing of the QCD coupling constant observed in the calculations can be a natural consequence of the onset of a gluon mass scale, giving strong support to their claim.
Resumo:
In this work we study the warm equation of state of asymmetric nuclear matter in the quark-meson coupling model which incorporates explicitly quark degrees of freedom, with quarks coupled to scalar, vector, and isovector mesons. Mechanical and chemical instabilities are discussed as a function of density and isospin asymmetry. The binodal section, essential in the study of the liquid-gas phase transition is also constructed and discussed. The main results for the equation of state are compared with two common parametrizations used in the nonlinear Walecka model and the differences are outlined.
Resumo:
No hemisfério norte, o censo de aves é fundamental para gerar informações que auxiliam na compreensão de tendências populacionais. Tais censos, devido à marcada sazonalidade deste hemisfério, são realizados durante dois momentos distintos: na estação reprodutiva (aves residentes) e no inverno (quando as aves migratórias deixam determinadas regiões). Na região neotropical, porém, dependendo da localidade, as aves podem se reproduzir durante qualquer ou vários períodos do ano; podem ou não migrar, e aquelas que o fazem podem apresentar um padrão assincrônico. Em contraste com o hemisfério norte, tendências populacionais são desconhecidas, bem como o impacto das taxas rápidas de urbanização e desmatamento, que também são pouco monitoradas. Para melhor entender padrões temporais de riqueza e abundância de aves, e avaliar como um censo similar pode ser implementado na América tropical, foram utilizados pontos de escuta ao longo de 12 meses em uma localidade no Estado de São Paulo, sudeste do Brasil. Os censos ocorreram duas vezes por dia (manhãs/tardes) em uma floresta semidecidual ao longo de transecções com 10 pontos (20 pontos por dia) distantes 200 m entre si e com raio de detecção limitado em 100 m. Ambas as riquezas e abundâncias de aves foram maiores durante as manhãs, mas as curvas de acumulação sugerem que os censos vespertinos com maior esforço amostral podem fornecer resultados similares aos censos matutinos. Riqueza e abundância das aves não variam de acordo com estações (i.e., sem padrão aparente entre reprodução e migração), enquanto espécies exclusivas foram encontradas todos os meses e relativamente poucas espécies (20%) foram registradas em todos os meses do ano. Durante este ano, 84% de todas as aves florestais da área estudada foram registradas. Sugerimos que a metodologia de pontos de escuta pode ser utilizada à semelhança dos censos do hemisfério norte. Recomendamos ainda que o esforço amostral em transecções deva incluir ao menos 20 pontos, e que o início da contagem das aves deva ser sazonal, utilizando o período de migração das espécies austrais (e os seis meses seguintes) para coordenar pontos de escuta. Por último, sugerimos que os censos no Brasil e até mesmo na América Latina podem ajudar no entendimento de tendências populacionais, mas também demandam maior esforço do que o observado em latitudes temperadas, devido à maior riqueza de espécies e diferenças nas dinâmicas de reprodução e migração. Por meio do uso de censos de aves coordenados poderá ser desenvolvida uma técnica para os trópicos que irá gerar informações que permitam acompanhar tendências populacionais, com benefícios para a conservação das aves, similarmente aos censos realizados em países do hemisfério norte.