169 resultados para Plasmonic photocatalysts


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diese Arbeit beschäftigt sich mit der Herstellung und Anwendungen von periodischen Goldnanopartikel-Arrays (PPAs), die mit Hilfe von Nanosphären-Lithografie hergestellt wurden. In Abhängigkeit der verwendeten Nanosphären-Größe wurden dabei entweder kleine dreieckige Nanopartikel (NP) (bei Verwendung von Nanosphären mit einem Durchmesser von 330 nm) oder große dreieckige NPD sowie leicht gestreckte NP (bei Verwendung von Nanosphären mit einem Durchmesser von 1390 nm) hergestellt. Die Charakterisierung der PPAs erfolgte mit Hilfe von Rasterkraftmikroskopie, Rasterelektronenmikroskopie und optischer Spektroskopie. Die kleinen NP besitzen ein Achsverhältnis (AV) von 2,47 (Kantenlänge des NPs: (74+/-6) nm, Höhe: (30+/-4) nm. Die großen dreieckigen NP haben ein AV von 3 (Kantenlänge des NPs:(465+/-27) nm, Höhe: (1530+/-10) nm) und die leicht gestreckten NP (die aufgrund der Ausbildung von Doppelschichten ebenfalls auf der gleichen Probe erzeugt wurden) haben eine Länge von (364+/-16)nm, eine Breite von (150+/-20) nm und eine Höhe von (150+/-10)nm. Die optischen Eigenschaften dieser NP werden durch lokalisierte Oberflächenplasmon-Polariton Resonanzen (LPPRs) dominiert, d.h. von einem eingestrahlten elektromagnetischen Feld angeregte kollektive Schwingungen der Leitungsbandelektronen. In dieser Arbeit wurden drei signifikante Herausforderungen für Plasmonik-Anwendungen bearbeitet, welche die einzigartigen optischen Eigenschaften dieser NP ausnutzen. Erstens wurden Ergebnisse der selektiven und präzisen Größenmanipulation und damit einer Kontrolle der interpartikulären Abstände von den dreieckigen Goldnanopartikel mit Hilfe von ns-gepulstem Laserlicht präsentiert. Die verwendete Methode basiert hierbei auf der Größen- und Formabhängigkeit der LPPRs der NP. Zweitens wurde die sensorischen Fähigkeiten von Gold-NP ausgenutzt, um die Bildung von molekularen Drähten auf den PPAs durch schrittweise Zugabe von unterschiedlichen molekularen Spezies zu untersuchen. Hierbei wurde die Verschiebung der LSPPR in den optischen Spektren dazu ausgenutzt, die Bildung der Nanodrähte zu überwachen. Drittens wurden Experimente vorgestellt, die sich die lokale Feldverstärkung von NP zu nutze machen, um eine hochgeordnete Nanostrukturierung von Oberflächen mittels fs-gepulstem Laserlicht zu bewerkstelligen. Dabei zeigt sich, dass neben der verwendeten Fluenz die Polarisationsrichtung des eingestrahlten Laserlichts in Bezug zu der NP-Orientierung sowie die Größe der NP äußerst wichtige Parameter für die Nanostrukturierung darstellen. So konnten z.B. Nanolöcher erzeugt werden, die bei höheren Fluenzen zu Nanogräben und Nanokanälen zusammen wuchsen. Zusammengefasst lässt sich sagen, dass die in dieser Arbeit gewonnen Ergebnisse von enormer Wichtigkeit für weitere Anwendungen sind.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the thesis is to theoretically investigate optical/plasmonic antennas for biosensing applications. The full 3-D numerical electromagnetic simulations have been performed by using finite integration technique (FIT). The electromagnetic properties of surface plasmon polaritons (SPPs) and the localized surface plasmons (LSPs) based devices are studied for sensing purpose. The surface plasmon resonance (SPR) biosensors offer high refractive index sensitivity at a fixed wavelength but are not enough for the detection of low concentrations of molecules. It has been demonstrated that the sensitivity of SPR sensors can be increased by employing the transverse magneto-optic Kerr effect (TMOKE) in combination with SPPs. The sensor based on the phenomena of TMOKE and SPPs are known as magneto-optic SPR (MOSPR) sensors. The optimized MOSPR sensor is analyzed which provides 8 times higher sensitivity than the SPR sensor, which will be able to detect lower concentration of molecules. But, the range of the refractive index detection is limited, due to the rapid decay of the amplitude of the MOSPR-signal with the increase of the refractive indices. Whereas, LSPs based sensors can detect lower concentrations of molecules, but their sensitivity is small at a fixed wavelength. Therefore, another device configuration known as perfect plasmonic absorber (PPA) is investigated which is based on the phenomena of metal-insulator-metal (MIM) waveguide. The PPA consists of a periodic array of gold nanoparticles and a thick gold film separated by a dielectric spacer. The electromagnetic modes of the PPA system are analyzed for sensing purpose. The second order mode of the PPA at a fixed wavelength has been proposed for the first time for biosensing applications. The PPA based sensor combines the properties of the LSPR sensor and the SPR sensor, for example, it illustrates increment in sensitivity of the LSPR sensor comparable to the SPR and can detect lower concentration of molecules due to the presence of nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

355 nm light irradiation of fac-[Mn(CO)(3)(phen)(imH)](+) (fac-1) produces the mer-1 isomer and a long lived radical which can be efficiently trapped by electron acceptor molecules. EPR experiments shows that when excited, the manganese(I) complex can be readily oxidized by one-electron process to produce Mn(II) and phen(.-). In the present study, DFT calculations have been used to investigated the photochemical isomerization of the parent Mn(I) complex and to characterize the electronic structures of the long lived radical. The theoretical calculations have been performed on both the fac-1 and mer-1 species as well as on their one electron oxidized species fac-1+ and mer-1+ for the lowest spin configurations (S = 1/2) and fac-6 and mer-6 (S = 5/2) for the highest one to characterize these complexes. In particular, we used a charge decomposition analysis (CDA) and a natural bonding orbital (NBO) to have a better understanding of the chemical bonding in terms of the nature of electronic interactions. The observed variations in geometry and bond energies with an increasing oxidation state in the central metal ion are interpreted in terms of changes in the nature of metal-ligand bonding interactions. The X-ray structure of fac-1 is also described. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show how a circuit analysis, used widely in electrical engineering, finds application to problems of light wave injection and transport in subwavelength structures in the optical frequency range. Lumped circuit and transmission-line analysis may prove helpful in the design of plasmonic devices with standard, functional properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photocatalytic performance of TiO(2)-SiMgO(x) ceramic plates for trichloroethylene abatement in gas phase has been evaluated under sun irradiance conditions. A continuous flow Pyrex glass reactor fixed on the focus of a compound parabolic collector has been used. The performance of the hybrid photocatalyst has been evaluated as the variation of TCE conversion and reaction products formation with the solar irradiance at different total gas flow, TCE concentration, and water vapour content. SiMgO(x) not only provides adsorbent properties to the photocatalyst, but it also allows the effective use of the material during low solar irradiance conditions. The adsorption-desorption phenomena play a pivotal role in the behaviour of the system. Thus, TCE conversion curves present two different branches when the sun irradiance increases (sunrise) or decreases (sunset). CO(2), COCl(2) and DCAC were the most relevant products detected. Meanwhile CO(2) concentration was insensitive to the branch analysed, COCl(2) or DCAC were not indicating the ability of these compounds to be adsorbed on the composite. An increase of the UV irradiation at total TCE conversion promotes the CO(2) selectivity. The excess of energy arriving to the reactor favours the direct reaction pathway to produce CO(2). The photonic efficiency, calculated as a function of the rate of CO(2) formation, decreases linearly with the solar irradiance up to around 2 mW cm(-2), where it becomes constant. For decontamination systems high TCE conversion is pursuit and then high solar irradiance values are required, in spite of lower photonic efficiency values. The present photocatalyst configuration, with only 17% of the reactor volume filled with the photoactive material, allows total TCE conversion for 150 ppm and 1 L min(-1) in a wide sun irradiance window from 2 to 4 mW cm(-2). The incorporation of water vapour leads to an increase of the CO(2) selectivity keeping the TCE conversion around 90%, although significant amounts of COCl(2) were observed. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study describes the efficiency of heterogeneous photocatalytic reactor for the inactivation of three air born bacteria, Escherichia coli, Bacillus subtilis and Staphylococcus aureus using metal modified TiO2 photocatalysts and blacklight irradiation. The catalysts were prepared by photodeposition of silver, palladium or iron on commercial TiO2, immobilized on glass plates. X-ray photoelectron spectroscopy analysis was applied to determine the atomic percentage and species of each metal on the TiO2 surface, showing that 85% of silver, 73% of palladium and 45% of iron were present in metallic form on TiO2 surface. The plates were positioned on the inner lateral walls of a chamber through which the contaminated air flow passed for disinfection. Irradiation of bare TiO 2 resulted in 50% inactivation of E. coli while 41% and 35% inactivation of B. subtilis and S. aureus were obtained, respectively. When metal modified TiO2 was applied, the inactivation of B. subtilis was improved to 91% using Pd-TiO2 while of S. aureus was improved to 94% with Fe-TiO2, showing in this case no significant difference when compared to Ag-TiO2 and Pd-TiO2. In contrast, inactivation of E. coli was not significantly increased when metal modified TiO2 was used, ranging from 47% to 57%. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasmon-enhanced spectroscopic techniques have expanded single-molecule detection (SMD) and are revolutionizing areas such as bio-imaging and single-cell manipulation. Surface-enhanced (resonance) Raman scattering (SERS or SERRS) combines high sensitivity with molecularfingerprint information at the single-molecule level. Spectra originating from single-molecule SERS experiments are rare events, which occur only if a single molecule is located in a hot-spot zone. In this spot, the molecule is selectively exposed to a significant enhancement associated with a high, local electromagnetic field in the plasmonic substrate. Here, we report an SMD study with an electrostatic approach in which a Langmuir film of a phospholipid with anionic polar head groups (PO 4 -) was doped with cationic methylene blue (MB), creating a homogeneous, two-dimensional distribution of dyes in the monolayer. The number of dyes in the probed area of the Langmuir-Blodgett (LB) film coating the Ag nanostructures established a regime in which single-molecule events were observed, with the identification based on direct matching of the observed spectrum at each point of the mapping with a reference spectrum for the MB molecule. In addition, advanced fitting techniques were tested with the data obtained from micro-Raman mapping, thus achieving real-time processing to extract the MB single-molecule spectra. © 2013 Society for Applied Spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Much has been talking about the advantages of polymeric nanocomposites, but little is known about the influence of nanoparticles on the stability of these materials. In this sense, we studied the influence of both oxides of zirconium and titanium, known to have photocatalytic properties, as well as the influence of synthetic clay Laponite on the photodegradation of styrene-butadiene rubber (SBR). SBR nanocomposites were prepared by the colloidal route by mixing commercial polymer lattices and nanometric anatase TiO2, monoclinic ZrO2 or exfoliated Laponite clays colloidal suspensions. To better understand the degradation mechanisms that occur in these nanocomposites, the efficiency of different photocatalysts under ultraviolet radiation was monitored by FT-IR and UV-vis spectroscopies and by differential scanning calorimetric. It was observed that TiO2 and ZrO2 nanoparticles undoubtedly acted as catalysts during the photodegradation process with different efficiencies and rates. However, when compared to pure SBR samples, the polymer degradation mechanism was unaffected. Unlike studies with nanocomposites montmorillonite, exfoliated laponite clay effectively acts as a photostabilizer of polymer UV photodegradation. Copyright © 2012 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relative to the Er3 +:gold-nanoparticle (Er3 +:Au-NP) axis, the polarization of the gold nanoparticle can be longitudinal (electric dipole parallel to the Er3 +:Au-NP axis) or transverse (electric dipole perpendicular to the Er3 +:Au-NP axis). For longitudinal polarization, the plasmon resonance modes of gold nanoparticles embedded in Er3 +-doped germanium-tellurite glass are activated using laser lines at 808 and 488 nm in resonance with radiative transitions of Er3 + ions. The gold nanoparticles were grown within the host glass by thermal annealing over various lengths of time, achieving diameters lower than 1.6 nm. The resonance wavelengths, determined theoretically and experimentally, are 770 and 800 nm. The absorption wavelength of nanoparticles was determined by using the Frohlich condition. Gold nanoparticles provide tunable emission resulting in a large enhancement for the 2H11/2 → 4I13/2 (emission at 805 nm) and 4S 3/2 → 4I13/2 (emission at 840 nm) electronic transitions of Er3 + ions; this is associated with the quantum yield of the energy transfer process. The excitation pathways, up-conversion and luminescence spectra of Er3 + ions are described through simplified energy level diagrams. We observed that up-conversion is favored by the excited-state absorption due to the presence of the gold nanoparticles coupled with the Er3 + ions within the glass matrix. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, magnetic photocatalysts were synthesized containing differents levels of TiO2 (40, 60 e 80%) supported at the supporter of C/LV, forming the photocatalysts 40, 60, 80Ti/C/LV, using tar pitch as carbon (C) source and red mud (LV) as iron source. The prepared magnetic photocatalysts and TiO2 were used to degrade the Remazol Black textile dye (PR5) and the organic material present in samples of a textile dye effluent. The characterization of photocatalysts by Raman, X-Ray Diffraction, Transmission Electron Micoscope and Scanning, Energy Dispersive X-ray Spectrometry, Termogravimetry and Elemental Analysis, confirms the presence of carbon and magnetite in support C/LV and the presence of TiO2 in prepared photocatalysts. The photocatalytic reactions with TiO2 were analyzed by different experimental conditions, such as: mass of TiO2 (30-240 mg), solution pH (2-10), light intensity (0.871 and 1.20 mWcm-2), type of radiation (UV and sunlight-1.420 mWcm-2), radiation incidence area (44.2 to 143.1 cm2) and dissolved oxygen (OD, 1.9 and 7.6 mg L- 1). Results showed that reactions with the following conditions: 220 mg of TiO2, pH 10, solar radiation, 7.6 mg L-1 of OD and an incidence area of radiation of 143.1 cm2 showed the best results for degradation of PR5 dye. Photocatalytic reactions with magnetic photocatalysts for degrading PR5 shows that efficiency increases with TiO2 content in the C/LV support, where, above 60% of TiO2, there was not significant increase in reaction velocity. In addition, solar radiation has proved to be advantageous for photocatalytic reactions. In order to verify the presence of a non-magnetic fraction in the photocatalyst 60Ti/C/LV0, magnetic separation was proceeded. The characterizations of the magnetic (FM) and nonmagnetic (NMF) fraction confirmed that about 25% of TiO2 did not fixed in 60Ti/C/LV photocatalyst. Results of photocatalytic reactions with FM and FNM showed that both phases have photocatalytic activity for degradation of PR5. The reactions executed for the degradation of organic matter present in the actual sample of textile effluent showed that TiO2 and magnetic photocatalyst 60Ti/C/ LV have better results for color removal (85 to 35%), soluble solids ( 11 and 3%), DQO (90 and 86%) and turbidity (94 and 11%) than the treatment done by the textile industry. Sedimentation kinetics tests in presence of a magnet showed that photocatalysts are separated faster from aqueous environment than pure TiO2. Obtained results showed that magnetic photocatalysts have excellent photocatalytic activity and can be separated from the reaction environment on a simple and quick way when a magnetic field is applied.