998 resultados para Pinacoteca nazionale di Siena
Resumo:
We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5 x 10(17) eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.
Resumo:
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The ""hybrid"" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz`min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38(-6)(+7))%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69-(+11)(13))%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions. (C) 2010 Elsevier B.V All rights reserved.
Measurement of the energy spectrum of cosmic rays above 10(18) eV using the Pierre Auger Observatory
Resumo:
We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously published energy spectrum obtained with the surface detector array The two spectra are combined addressing the systematic uncertainties and, in particular. the influence of the energy resolution on the spectral shape The spectrum can be described by a broken power law E(-gamma) with index gamma = 3 3 below the ankle which is measured at log(10)(E(ankle)/eV) = 18 6 Above the ankle the spectrum is described by a power law with index 2 6 followed by a flux suppression, above about log(10)(E/eV) = 19 5, detected with high statistical significance (C) 2010 Elsevier B V All rights reserved
Resumo:
The air fluorescence detector of the Pierre Auger Observatory is designed to perforin calorimetric measurements of extensive air showers created by Cosmic rays of above 10(18) eV. To correct these measurements for the effects introduced by atmospheric fluctuations, the Observatory contains a group Of monitoring instruments to record atmospheric conditions across the detector site, ail area exceeding 3000 km(2). The atmospheric data are used extensively in the reconstruction of air showers, and are particularly important for the correct determination of shower energies and the depths of shower maxima. This paper contains a summary of the molecular and aerosol conditions measured at the Pierre Auger Observatory since the start of regular operations in 2004, and includes a discussion of the impact of these measurements oil air shower reconstructions. Between 10(18) and 10(20) eV, the systematic Uncertainties due to all atmospheric effects increase from 4% to 8% in measurements of shower energy, and 4 g cm(-2) to 8 g cm(-2) in measurements of the shower maximum. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In geophysics and seismology, raw data need to be processed to generate useful information that can be turned into knowledge by researchers. The number of sensors that are acquiring raw data is increasing rapidly. Without good data management systems, more time can be spent in querying and preparing datasets for analyses than in acquiring raw data. Also, a lot of good quality data acquired at great effort can be lost forever if they are not correctly stored. Local and international cooperation will probably be reduced, and a lot of data will never become scientific knowledge. For this reason, the Seismological Laboratory of the Institute of Astronomy, Geophysics and Atmospheric Sciences at the University of São Paulo (IAG-USP) has concentrated fully on its data management system. This report describes the efforts of the IAG-USP to set up a seismology data management system to facilitate local and international cooperation. © 2011 by the Istituto Nazionale di Geofisica e Vulcanologia. All rights reserved.
Resumo:
The ALICE Collaboration has measured inclusive J/psi production in pp collisions at a center-of-mass energy root s = 2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges vertical bar y vertical bar < 0.9 and 2.5 < y <4 and have been obtained by measuring the electron and muon pair decay channels, respectively. The integrated luminosities for the two channels are L-int(e) = 1.1 nb(-1) and L-int(mu) = 19.9 nb(-1), and the corresponding signal statistics are N-J/psi(e+e-) = 59 +/- 14 and N-J/psi(mu+mu-) = 1364 +/- 53. We present d sigma(J/psi)/dy for the two rapidity regions under study and, for the forward-y range, d(2)sigma(J/psi)/dydp(t) in the transverse momentum domain 0 < p(t) < 8 GeV/c. The results are compared with previously published results at root s = 7 TeV and with theoretical calculations. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
Resumo:
Observations of cosmic rays arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three method can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ... , 110 highest energy events with a corresponding minimum energy threshold of about 49.3 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.
Resumo:
High precision elastic and inelastic angular distributions have been measured for the O-16 + Al-27 system at a beam energy of 100 MeV. The data analysis confirms a rainbow formation as already predicted by parameter-free Coupled Channel calculations. It also helps to reveal the crucial role of inelastic couplings in the rainbow formation for heavier systems even at energies far above the Coulomb barrier. This feature, well known in atomic/molecular scattering, is experimentally studied for the first time in Nuclear Physics. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The ALICE Collaboration has studied J/psi production in pp collisions at root s = 7 TeV at the LHC through its muon pair decay. The polar and azimuthal angle distributions of the decay muons were measured, and results on the J/psi polarization parameters lambda(theta) and lambda(phi) were obtained. The study was performed in the kinematic region 2: 5 < y < 4, 2 < p(t) < 8 GeV/c, in the helicity and Collins-Soper reference frames. In both frames, the polarization parameters are compatible with zero, within uncertainties.
Resumo:
Excited states of the N = Z = 33 nucleus As-66 have been populated in a fusion-evaporation reaction and studied using gamma-ray spectroscopic techniques. Special emphasis was put into the search for candidates for the T = 1 states. A new 3(+) isomer has been observed with a lifetime of 1.1(3) ns. This is believed to be the predicted oblate shape isomer. The excited levels are discussed in terms of the shell model and of the complex excited Vampir approaches. Coulomb energy differences are determined from the comparison of the T = 1 states with their analog partners. The unusual behavior of the Coulomb energy differences in the A = 70 mass region is explained through different shape components (oblate and prolate) within the members of the same isospin multiplets. This breaking of the isospin symmetry is attributed to the correlations induced by the Coulomb interaction.
Resumo:
We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.
Resumo:
Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown. (C) 2012 Elsevier B.V. All rights reserved.