985 resultados para Photoluminescence properties
Resumo:
We report, for the first time, the photoluminescence properties of Eu3+-doped LiNa3P2O7 phosphor, synthesized by a facile solid-state reaction method in air atmosphere. The crystal structure and phase purity of the phosphors were analyzed by X-ray diffraction analysis. Orthorhombic structural morphology was identified by scanning electron microscopy. The phosphate groups in the phosphor were confirmed by Fourier transform infrared analysis. Bandgap of the phosphor was calculated from the diffuse reflectance spectra data using Kubelka-Munk function. Under 395-nm UV excitation, the phosphors show signs of emitting red color due to the D-5(0) -> F-7(2) transition. In accordance with Judd-Ofelt theory, spectroscopic parameters such as oscillator intensity parameter Omega(t) (t = 2), spontaneous emission probabilities, fluorescence branching ratios and radiative lifetimes were calculated and analyzed for the first time in this system.
Resumo:
Undoped and Ln(3+) (Eu and Tb)-doped crystalline nanobundles of YPO4 were prepared by a facile microwave-assisted route with water as a solvent and without using any surfactant. TEM investigations reveal that the as-prepared powder consists of lenticular-shaped nanobundles (similar to 100 nm in diameter) made of very small nanorods with diameter less than 10 nm and length varying from 20 to 50 nm. Each nanorod in turn is single crystalline, as revealed by HRTEM imaging. The as-prepared nanobundles are easily dispersible in various solvents, especially water, without any surface functionalization, which is critical for various bio-probe applications like cell and tissue imaging. The Eu- and Tb-doped YPO4 nanobundles show good photoluminescence properties and were further evaluated for their use as fluorescent biolabels. Our results show that HeLa cells labelled with Eu- and Tb-doped YPO4 nanobundles show bright red (Eu) and green (Tb) intracellular luminescence under a confocal microscope. Concentration-and time-dependent MTT cell viability assays show that the nanobundles show low toxicity towards cells which makes them promising in bioimaging field.
Resumo:
For the first time, the effect of Na+ on crystal structure, valence state of Yb ions, spectroscopic properties of YbF3-doped CaF2 system was systematically studied. Na+ can greatly suppress the deoxidization of Yb3+ to Yb2+. Absorption and emission spectra showed codoping Na+ with different Na:Yb ratios can modulate the spectroscopy and photoluminescence properties of Yb3+ ions in CaF2 lattice in a large scope. The emission lifetime and quantum efficiency of Yb3+ in CaF2 were greatly enhanced by the codopant of Na+. The potential laser performances of the new Yb, Na-codoped CaF2 crystals were predicted. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We report the in situ formation of two novel metal-organic frameworks based on terbium and dysprosium ions using azobenzene-4,4-dicarboxylic acid (H(2)abd) as ligand, synthesized by soft hydrothermal routes. Both materials show isostructural three-dimensional networks with channels along a axis and display intense photoluminescence properties in the solid state at room temperature. Textural properties of the metal-organic frameworks (MOFs) have been fully characterized although no appreciable porosity was obtained. Magnetic properties of these materials were studied, highlighting the dysprosium material displays slightly frequency-dependent out of phase signals when measured under zero external field and under an applied field of 1000 Oe.
Resumo:
Multilayer InGaN/GaN quantum dots (QDs) were grown on sapphire substrates through a three-dimensional growth mode, which was initiated by a special passivation processing introduced into the normal growth procedure. Surface morphology and photoluminescence properties of QDs with different stacking periods (from one to four) were investigated. The temperature dependences of the PL peak energies were found to show a great difference between two-layer and three-layer QDs. The fast redshift and the reversed sigmoidal temperature dependences of the PL energies for the former were attributed to the thermally activated carrier transfer from small to large dots. However, the increase of both the dot size and the spatial space among dots with the growing stacking periods reduced the carrier escape and retrapping. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the temperature and excitation power dependence of photoluminescence properties of InAs self-assembled quantum dots grown between two Al0.5Ga0.5As quantum wells. The temperature evolutions of the lower-and higher-energy transition in the photoluminescence spectra have been observed. The striking result is that a higher-energy peak appears at 105 K and its relative intensity increases with temperature in the 105-291 K range. We demonstrate that the higher-energy peak corresponds to the excited-state transition involving the bound-electron state of quantum dots and the two-dimensional hole continuum of wetting layer. At higher temperature, the carrier transition associated with the wetting layer dominates the photoluminescence spectra. A thermalization model is given to explain the process of hole thermal transfer between wetting layer and quantum dots. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Silicon nanowires (SiNWs) were grown directly from n-(111) single-crystal silicon (c-Si) substrate based on a solid-liquid-solid mechanism, and Au film was used as a metallic catalyst. The room temperature photoluminescence properties of SiNWs were observed by an Xe lamp with an exciting wavelength of 350 nm. The results show that the SiNWs exhibit a strongly blue luminescent band in the wavelength range 400-480 nm at an emission peak position of 420 nm. The luminescent mechanism of SiNWs indicates that the blue luminescence is attributed to the oxygen-related defects, which are in SiOx amorphous oxide shells around the crystalline core of SiNWs.
Resumo:
It is shown that Li diffusion of GaAs can give rise to semi-insulating samples with electrical resistivity as high as 10(7) OMEGAcm in undoped, n-type, and p-type starting materials. The optical properties of the compensated samples are correlated with the depletion of free carriers caused by the Li diffusion. The radiative recombination of the Li-compensated samples is dominated by emissions with excitation-dependent peak positions that shift to lower energies with increasing compensation. The photoluminescence properties are characteristic of fluctuations of the electrostatic potential in strongly doped, compensated crystals.
Resumo:
The photoluminescence (PL) properties of ZnSe films grown by hot wall epitaxy are reported. The PL spectra show clear neutral donor-bound exciton peak; donor acceptor pair (DAP) peak, conduction band to acceptor (CA) peak, and their phonon replicas until fourth order. The conduction band to acceptor peak and it's phonon replicas exist until room temperature. From the ratio of PL intensities of DAP and CA peaks and their replicas, we obtain the Huang-Rhys factor S = 0.58, in agreement with other experiments for acceptor-bound exciton transitions. From the temperature dependence of PL intensities we derive the activation energy of thermal quenching process for the DAP transitions as about 7 meV.
Resumo:
CdS nanoparticles were successfully prepared by polyol method with PVP-K30 as a surfactant. The microstructure, size and morphology of the products were investigated in detail by XRD, TEM and SEM. The results indicate that uniform CdS nanospheres were achieved. Photoluminescence properties of the resulted nanoparticles (S1 and S3) were investigated, and the results indicate that the CdS nanoparticles could be used as a potential blue light emitting material.
Resumo:
The crystal structure of Er(PM)(3)(TP)(2) [PM = 1-Phenyl-3-methyl-4-isobutyryl-5-pyrazoloiie, TP = triphenyl phosphine oxide] was reported and its photoluminescence properties were studied by UV-vis absorption, excited, and emission spectra. The Judd-ofelt theory was introduced to calculate the radiative transition rate and the radiative decay time of 3.65 ms for the I-4(13/2) -> I-4(15/2) transition of Er3+ ion in this complex.
Resumo:
Rhombohedral-calcite and hexagonal-vaterite types of LuBO:Eu3+ microparticles with various complex self-assembled 3D architectures have been prepared selectively by an efficient surfactant- and template-free hydrothermal process for the first time. X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectrometry, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, photoluminescence, and cathodoluminescence spectra as well as kinetic decays were used to characterize the samples.
Resumo:
Tb(1-x)BO3:xEu(3+) (x = 0-1) microsphere phosphors have been successfully prepared by a simple hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL), low-voltage cathodoluminescence (CL), and time-resolved emission spectra as well as lifetimes were used to characterize the samples.
Resumo:
Hexagonal vaterite-type LuBO3:Tb3+ microflower-like phosphors have been successfully prepared by an efficient surfactant- and template-free hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectrometry transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence(PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples.
Resumo:
Strontium hydroxyapatite (Sr-5(PO4)(3)OH, SrHAp) microspheres with 3D architectures have been successfully prepared through a efficient and facile solvothermal process. The experimental results indicate that the SrHAP microspheres are composed of a large amount of nanosheets, which are assembled in a radial form from the center to the surface of the microspheres. The as-obtained SrHAp samples show an intense and bright blue emission from 350 to 570 nm centered at 427 nm (CIE coordinates: x = 0.153, y = 0.081; lifetime: 9.2 ns; quantum efficiency: 31%) under long-wavelength UV light excitation (344 nm). This blue emission might result from the CO2 center dot- radical impurities in the crystal lattice. Furthermore, the surfactants CTAB and trisodium citrate have an obvious impact on the morphologies and the luminescence properties of the products, respectively.