979 resultados para Photoactive layers
Resumo:
Coherent vortices in turbulent mixing layers are investigated by means of Direct Numerical Simulation (DNS) and Large-Eddy Simulation (LES). Subgrid-scale models defined in spectral and physical spaces are reviewed. The new "spectral-dynamic viscosity model", that allows to account for non-developed turbulence in the subgrid-scales, is discussed. Pseudo-spectral methods, combined with sixth-order compact finite differences schemes (when periodic boundary conditions cannot be established), are used to solve the Navier- Stokes equations. Simulations in temporal and spatial mixing layers show two types of pairing of primary Kelvin-Helmholtz (KH) vortices depending on initial conditions (or upstream conditions): quasi-2D and helical pairings. In both cases, secondary streamwise vortices are stretched in between the KH vortices at an angle of 45° with the horizontal plane. These streamwise vortices are not only identified in the early transitional stage of the mixing layer but also in self-similar turbulence conditions. The Re dependence of the "diameter" of these vortices is analyzed. Results obtained in spatial growing mixing layers show some evidences of pairing of secondary vortices; after a pairing of the primary Kelvin-Helmholtz (KH) vortices, the streamwise vortices are less numerous and their diameter has increased than before the pairing of KH vortices.
Resumo:
We investigated the level of expression of neuronal nitric oxide synthase (nNOS) in the retinorecipient layers of the rat superior colliculus during early postnatal development. Male and female Lister rats ranging in age between the day of birth (P0) and the fourth postnatal week were used in the present study. Two biochemical methods were used, i.e., in vitro measurement of NOS specific activity by the conversion of [³H]-arginine to [³H]-citrulline, and analysis of Western blotting immunoreactive bands from superior colliculus homogenates. As revealed by Western blotting, very weak immunoreactive bands were observed as early as P0-2, and their intensity increased progressively at least until P21. The analysis of specific activity of NOS showed similar results. There was a progressive increase in enzymatic activity until near the end of the second postnatal week, and a nonsignificant tendency to an increase until the end of the third week was also observed. Thus, these results indicated an increase in the amount of nNOS during the first weeks after birth. Our results confirm and extend previous reports using histochemistry for NADPH-diaphorase and immunocytochemistry for nNOS, which showed a progressive increase in the number of stained cells in the superficial layers during the first two postnatal weeks, reaching an adult pattern at the end of the third week. Furthermore, our results suggested that nNOS is present in an active form in the rat superior colliculus during the period of refinement of the retinocollicular pathway.
Resumo:
Nitric oxide (NO) is a molecular messenger involved in several events of synaptic plasticity in the central nervous system. Ca2+ influx through the N-methyl-D-aspartate receptor (NMDAR) triggers the synthesis of NO by activating the enzyme neuronal nitric oxide synthase (nNOS) in postsynaptic densities. Therefore, NMDAR and nNOS are part of the intricate scenario of postsynaptic densities. In the present study, we hypothesized that the intracellular distribution of nNOS in the neurons of superior colliculus (SC) superficial layers is an NMDAR activity-dependent process. We used osmotic minipumps to promote chronic blockade of the receptors with the pharmacological agent MK-801 in the SC of 7 adult rats. The effective blockade of NMDAR was assessed by changes in the protein level of the immediate early gene NGFI-A, which is a well-known NMDAR activity-dependent expressing transcription factor. Upon chronic infusion of MK-801, a decrease of 47% in the number of cells expressing NGFI-A was observed in the SC of treated animals. Additionally, the filled dendritic extent by the histochemical product of nicotinamide adenine di-nucleotide phosphate diaphorase was reduced by 45% when compared to the contralateral SC of the same animals and by 64% when compared to the SC of control animals. We conclude that the proper intracellular localization of nNOS in the retinorecipient layers of SC depends on NMDAR activation. These results are consistent with the view that the participation of NO in the physiological and plastic events of the central nervous system might be closely related to an NMDAR activity-dependent function.
Resumo:
In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons.
Resumo:
In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons
Resumo:
In this paper, we report the in-plane and cross-plane measurements of the thermal diffusivity of double epitaxial layers of n-type GaAs doped with various concentrations of Si and a p-type Be-doped GaAs layer grown on a GaAs substrate by the molecular beam epitaxial method, using the laser-induced nondestructive photothermal deflection technique. The thermal diffusivity value is evaluated from the slope of the graph of the phase of the photothermal deflection signal as a function of pump-probe offset. Analysis of the data shows that the cross-plane thermal diffusivity is less than that of the in-plane thermal diffusivity. It is also seen that the doping concentration has a great influence on the thermal diffusivity value. Measurement of p-type Be-doped samples shows that the nature of the dopant also influences the effective thermal diffusivity value. The results are interpreted in terms of a phonon-assisted heat transfer mechanism and the various scattering process involved in the propagation of phonons
Resumo:
Photothermal beam deflection studies were carried out with GaAs epitaxial double layers grown on semi-insulating GaAs substrates. The impurity densities in thin epitaxial layers were found to influence the effective thermal diffusivity of the entire structure.
Resumo:
We report a photoacoustic (PA) study of the thermal and transport properties of a GaAs epitaxial layer doped with Si at varying doping concentration, grown on GaAs substrate by molecular beam epitaxy. The data are analyzed on the basis of Rosencwaig and Gersho’s theory of the PA effect. The amplitude of the PA signal gives information about various heat generation mechanisms in semiconductors. The experimental data obtained from the measurement of the PA signal as a function of modulation frequency in a heat transmission configuration were fitted with the phase of PA signal obtained from the theoretical model evaluated by considering four parameters—viz., thermal diffusivity, diffusion coefficient, nonradiative recombination time, and surface recombination velocity—as adjustable parameters. It is seen from the analysis that the photoacoustic technique is sensitive to the changes in the surface states depend on the doping concentration. The study demonstrates the effectiveness of the photoacoustic technique as a noninvasive and nondestructive method to measure and evaluate the thermal and transport properties of epitaxial layers.
Resumo:
The photoacoustic technique under heat transmission configuration is used to determine the effect of doping on both the thermal and transport properties of p- and n-type GaAs epitaxial layers grown on GaAs substrate by the molecular beam epitaxial method. Analysis of the data is made on the basis of the theoretical model of Rosencwaig and Gersho. Thermal and transport properties of the epitaxial layers are found by fitting the phase of the experimentally obtained photoacoustic signal with that of the theoretical model. It is observed that both the thermal and transport properties, i.e. thermal diffusivity, diffusion coefficient, surface recombination velocity and nonradiative recombination time, depend on the type of doping in the epitaxial layer. The results clearly show that the photoacoustic technique using heat transmission configuration is an excellent tool to study the thermal and transport properties of epitaxial layers under different doping conditions.
Resumo:
The Arabian Sea is an area of complex air-sea interaction processes with seasonal reversing monsoons. The associated thermohaline variability in the upper layers appears to control the large scale monsoon flow which is not yet completely understood. The variability in the thermohaline fields is known to occur in temporal domain ranging from intra-diurnal to inter-annual time scales and on spatial domains of few tens of kilometers to few thousands of kilometers. In the Arabian Sea though the surface temperature was routinely measured by both conventional measurements and satellites, the corresponding information on the subsurface thermohaline field is very sparse due to the lack cw adequate measurements. In such cases the numerical models offer promise in providing information on the subsurface features given an initial thermohaline field and surface heat flux boundary conditions. This thesis is an outcome of investigations carried out on the various aspects of the thermohaline variability on different time scales. In addition to the description of the mean annual cycle. the one dimensional numerical models of Miller (1976) and Price et a1 (1986) are utilised to simulate the observed mixed layer characteristics at selected locations in the Arabian Sea on time scales ranging from intra-diurnal to synoptic scales under variable atmospheric forcing.
Resumo:
The thesis deals with the study of super conducting properties of layered cuprates within the frame work of a modified Lawrence-Doniach (LD) model. The thesis is organized in seven chapters. Chapter I is a survey of the phenomena and theories of conventional superconductivity which can serve as a springboard for launching the study of the new class of oxide superconductors and it also includes a chronological description of the efforts made to overcome the temperature barrier. Chapter II deals with the structure and properties of the copper oxide superconductors and also the experimental constraints on the theories of high te:::nperature superconductivity. A modified Lawrence-Doniach type of phenomenological model which forms the basis of the presnt study is also discussed. In chapter III~ the temperature dependence of the upper critical field both parallel and perpendicular to the layers is determined and the results are compared with d.c. magnetization measurements on different superconducting compoilllds. The temperature and angular dependence of the lower critical field both parallel and perpendicular to the layers is also discussed. Chapters IV, V and VI deal with thermal fluctuation effects on superconducting properties. Fluctuation specific heat is studied in chapter IV. Paraconductivity both parallel and perpendicular to the layers is discussed in chapter V. Fluctuation diamagnetism is dealt with in chapter VI. Dimensional cross over in the fluctuation regime of all these quantities is also discussed. Chapter VII gives a summary of the results and the conclusions arrived at.
Resumo:
SnS thin films were prepared using automated chemical spray pyrolysis (CSP) technique. Single-phase, p-type, stoichiometric, SnS films with direct band gap of 1.33 eV and having very high absorption coefficient (N105/cm) were deposited at substrate temperature of 375 °C. The role of substrate temperature in determining the optoelectronic and structural properties of SnS films was established and concentration ratios of anionic and cationic precursor solutions were optimized. n-type SnS samples were also prepared using CSP technique at the same substrate temperature of 375 °C, which facilitates sequential deposition of SnS homojunction. A comprehensive analysis of both types of films was done using x-ray diffraction, energy dispersive x-ray analysis, scanning electron microscopy, atomic force microscopy, optical absorption and electrical measurements. Deposition temperatures required for growth of other binary sulfide phases of tin such as SnS2, Sn2S3 were also determined
Resumo:
We deal with the numerical solution of heat conduction problems featuring steep gradients. In order to solve the associated partial differential equation a finite volume technique is used and unstructured grids are employed. A discrete maximum principle for triangulations of a Delaunay type is developed. To capture thin boundary layers incorporating steep gradients an anisotropic mesh adaptation technique is implemented. Computational tests are performed for an academic problem where the exact solution is known as well as for a real world problem of a computer simulation of the thermoregulation of premature infants.