944 resultados para Phosphorylase-kinase
Resumo:
The protein kinases (PKs) belong to the largest single family of enzymes, phosphotransferases, which catalyze the phosphorylation of other enzymes and proteins and function primarily in signal transduction. Consequently, PKs regulate cell mechanisms such as growth, differentiation, and proliferation. Dysfunction of these cellular mechanisms may lead to cancer, a major predicament in health care. Even though there is a range of clinically available cancer-fighting drugs, increasing number of cancer cases and setbacks such as drug resistance, constantly keep cancer research active. At the commencement of this study an isophthalic acid derivative had been suggested to bind to the regulatory domain of protein kinase C (PKC). In order to investigate the biological effects and structure-activity relationships (SARs) of this new chemical entity, a library of compounds was synthesized. The best compounds induced apoptosis in human leukemia HL-60 cells and were not cytotoxic in Swiss 3T3 fibroblasts. In addition, the best apoptosis inducers were neither cytotoxic nor mutagenic. Furthermore, results from binding affinity assays of PKC isoforms revealed the pharmacophores of these isophthalic acid derivatives. The best inhibition constants of the tested compounds were measured to 210 nM for PKCα and to 530 nM for PKCδ. Among natural compounds targeting the regulatory domain of PKC, the target of bistramide A has been a matter of debate. It was initially found to activate PKCδ; however, actin was recently reported as the main target. In order to clarify and to further study the biological effects of bistramide A, the total syntheses of the natural compound and two isomers were performed. Biological assays of the compounds revealed accumulation of 4n polyploid cells as the primary mode of action and the compounds showed similar overall antiproliferative activities. However, each compound showed a distinct distribution of antimitotic effect presumably via actin binding, proapoptotic effect presumably via PKCδ, and pro-differentiation effect as evidenced by CD11b expression. Furthermore, it was shown that the antimitotic and proapoptotic effects of bistramide A were not secondary effects of actin binding but independent effects. The third aim in this study was to synthesize a library of a new class of urea-based type II inhibitors targeted at the kinase domain of anaplastic lymphoma kinase (ALK). The best compounds in this library showed IC50 values as low as 390 nM for ALK while the initial low cellular activities were successfully increased even by more than 70 times for NPM-ALK- positive BaF3 cells. More importantly, selective antiproliferative activity on ALK-positive cell lines was achieved; while the best compound affected the BaF3 and SU-DHL-1 cells with IC50 values of 0.5 and 0.8 μM, respectively, they were less toxic to the NPM-ALK-negative human leukemic cells U937 (IC50 = 3.2 μM) and BaF3 parental cells (IC50 = 5.4 μM). Furthermore, SAR studies of the synthesized compounds revealed functional groups and positions of the scaffold, which enhanced the enzymatic and cellular activities.
Resumo:
Propionate kinase catalyses the last step in the anaerobic breakdown of L-threonine to propionate in which propionyl phosphate and ADP are converted to propionate and ATR Here we report the structures of propionate kinase (TdcD) in the native form as well as in complex with diadenosine 5 ',5 '''-P-1,P-4-tetraphosphate (AP(4)A) by X-ray crystallography. Structure of TdcD obtained after cocrystallization with ATP showed Ap(4)A bound to the active site pocket suggesting the presence of Ap(4)A synthetic activity in TdcD. Binding of Ap(4)A to the enzyme was confirmed by the structure determination of a TdcD-Ap(4)A complex obtained after cocrystallization of TdcD with commercially available Ap(4)A. Mass spectroscopic studies provided further evidence for the formation of Ap(4)A by propionate kinase in the presence of ATP. In the TdcD-Ap(4)A complex structure, Ap(4)A is present in an extended conformation with one adenosine moiety present in the nucleotide binding site and other in the proposed propionate binding site. These observations tend to support direct in-line transfer of phosphoryl group during the kinase reaction.
Resumo:
1. Mevalonate pyrophosphate decarboxylase of rat liver is inhibited by various phenyl and phenolic acids. 2. Some of the phenyl and phenolic acids also inhibited mevalonate phosphate kinase. 3. Compounds with the phenyl-vinyl structure were more effective. 4. Kinetic studies showed that some of the phenolic acids compete with the substrates, mevalonate 5-phosphate and mevalonate 5-pyrophosphate, whereas others inhibit umcompetitively. 5. Dihydroxyphenyl and trihydroxyphenyl compounds and p-chlorophenoxyisobutyrate, a hypocholesterolaemic drug, had no effect on these enzymes. 6. Of the three mevalonate-metabolizing enzymes, mevalonate pyrophosphate decarboxylase has the lowest specific activity and is probably the rate-determining step in this part of the pathway.
Resumo:
Dephosphocoenzyme A kinase performs the transfer of the c-phosphate of ATP to dephosphocoenzyme A, catalyzing the last step of coenzyme A biosynthesis. This enzyme belongs to the P-loop-containing NTP hydrolase superfamily, all members of which posses a three domain topology consisting of a CoA domain that binds the acceptor substrate, the nucleotide binding domain and the lid domain. Differences in the enzymatic organization and regulation between the human and mycobacterial counterparts, have pointed out the tubercular CoaE as a high confidence drug target (HAMAP database). Unfortunately the absence of a three-dimensional crystal structure of the enzyme, either alone or complexed with either of its substrates/regulators, leaves both the reaction mechanism unidentified and the chief players involved in substrate binding, stabilization and catalysis unknown. Based on homology modeling and sequence analysis, we chose residues in the three functional domains of the enzyme to assess their contributions to ligand binding and catalysis using site-directed mutagenesis. Systematically mutating the residues from the P-loop and the nucleotide-binding site identified Lys14 and Arg140 in ATP binding and the stabilization of the phosphoryl intermediate during the phosphotransfer reaction. Mutagenesis of Asp32 and Arg140 showed catalytic efficiencies less than 5-10% of the wild type, indicating the pivotal roles played by these residues in catalysis. Non-conservative substitution of the Leu114 residue identifies this leucine as the critical residue from the hydrophobic cleft involved in leading substrate, DCoA binding. We show that the mycobacterial enzyme requires the Mg2+ for its catalytic activity. The binding energetics of the interactions of the mutant enzymes with the substrates were characterized in terms of their enthalpic and entropic contributions by ITC, providing a complete picture of the effects of the mutations on activity. The properties of mutants defective in substrate recognition were consistent with the ordered sequential mechanism of substrate addition for CoaE.
Resumo:
The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations. (C) 2011 American Institute of Physics. doi:10.1063/1.3516588]
Resumo:
The effect of arachidonic acid (AA) on the activity of diacylglycerol (DG) kinase in neural membranes was investigated. When rat brain cortical membranes were incubated with 0.5 mM dipalmitin and [gamma-P-32]ATP, formation of phosphatidic acid (PA) was observed. It was linear up to 5 min, and the initial rate was similar to 1.0 nmol/min/mg of protein. The DG kinase activity was stimulated twofold by 0.25 mM AA. The stimulation was apparent at the earliest time point measured (1 min) and with the lowest concentration of AA tested (62.5 mu M). The stimulation was proportional to the concentration of AA up to 250 mu M. AA was the most potent stimulator of DG kinase, and linolenic acid showed similar to 40% stimulation. Oleic acid showed no effect, whereas linoleic and the saturated fatty acids tested were inhibitory. AA stimulation of DG kinase was observed only with membranes of cerebrum, cerebellum, and myelin and not with brain cytosol or liver membranes. AA also stimulated the formation of PA in the absence of added dipalmitin (endogenous activity) with membranes prepared from whole brain. DG kinase of neural membranes was extracted with 2 M NaCl, which on dialysis yielded a precipitate. Both the precipitate and the supernatant showed DG kinase activity, but only the enzyme in the precipitate was stimulated by AA at concentrations as low as 25 mu M. It is suggested that AA, through its effect on DG kinase, regulates the level of DG in neural membranes, which in turn regulates protein kinase C activity.
Resumo:
Calcium/calmodulin dependent protein kinase II (CaMKII) is implicated to play a key role in learning and memory. NR2B subunit of N-methyl-D-aspartate receptor (NMDAR) is a high affinity binding partner of CaMKII at the postsynaptic membrane. NR2B binds to the T-site of CaMKII and modulates its catalysis. By direct measurement using isothermal titration calorimetry (ITC), we show that NR2B binding causes about 11 fold increase in the affinity of CaMKII for ATP gamma S, an analogue of ATP. ITC data is also consistent with an ordered binding mechanism for CaMKII with ATP binding the catalytic site first followed by peptide substrate. We also show that dephosphorylation of phospho-Thr(286)-alpha-CaMKII is attenuated when NR2B is bound to CaMKII. This favors the persistence of Thr(286) autophosphorylated state of CaMKII in a CaMKII/phosphatase conjugate system in vitro. Overall our data indicate that the NR2B- bound state of CaMKII attains unique biochemical properties which could help in the efficient functioning of the proposed molecular switch supporting synaptic memory.
Resumo:
The effect of docosahexaenoic acid (DHA) on the diacylglycerol kinase (DG kinase) activity in rat brain membranes was investigated. DHA at 500 mu M concentration, stimulated the enzyme activity by about 2 fold. This effect was concentration-and time-dependent and was observed after very short periods of incubation (one min). DHA stimulation of DG kinase was observed only with rat brain membranes, and not with rat brain cytosol or rat liver membranes. Treating the rat brain membranes with phospholipase A(2) which released free fatty acids including DHA, significantly stimulated the DG kinase activity. It is concluded that DHA through its stimulatory effect on DG kinase may regulate the signalling events in growth-related situations in the brain such as synaptogenesis.
Resumo:
The catalytic conversion ATP + AMP -> 2ADP by the enzyme adenylate kinase (ADK) involves the binding of one ATP. molecule to the LID domain and one AMP molecule to the NMP domain. The latter is followed by a. phosphate transfer and then the release of two ADP molecules. We have computed a novel two-dimensional configurational free energy surface (2DCFES), with one reaction coordinate each for the LID and the NMP domain motions, while considering explicit water interactions. Our computed 2DCFES clearly reveals the existence of a stable half-open half-closed (HOHC) intermediate stale of the enzyme. Cycling of the enzyme through the HOHC state reduces the conformational free energy barrier for. the reaction by about 20 kJ/mol. We find that the stability of the HOHC state (missed in all earlier studies with implicit solvent model) is largely because of the increase of specific interactions of the polar amino acid side chains with water, particularly with the arginine and the histidine residues. Free energy surface of the LID domain is rather rugged, which can conveniently slow down LID's conformational motion, thus facilitating a new substrate capture after the product release in the catalytic cycle.
Resumo:
Being vastly different from the human counterpart, we suggest that the last enzyme of the Mycobacterium tuberculosis Coenzyme A biosynthetic pathway, dephosphocoenzyme A kinase (CoaE) could be a good anti-tubercular target. Here we describe detailed investigations into the regulatory features of the enzyme, affected via two mechanisms. Enzymatic activity is regulated by CTP which strongly binds the enzyme at a site overlapping that of the leading substrate, dephosphocoenzyme A (DCoA), thereby obscuring the binding site and limiting catalysis. The organism has evolved a second layer of regulation by employing a dynamic equilibrium between the trimeric and monomeric forms of CoaE as a means of regulating the effective concentration of active enzyme. We show that the monomer is the active form of the enzyme and the interplay between the regulator, CTP and the substrate, DCoA, affects enzymatic activity. Detailed kinetic data have been corroborated by size exclusion chromatography, dynamic light scattering, glutaraldehyde crosslinking, limited proteolysis and fluorescence investigations on the enzyme all of which corroborate the effects of the ligands on the enzyme oligomeric status and activity. Cysteine mutagenesis and the effects of reducing agents on mycobacterial CoaE oligomerization further validate that the latter is not cysteine-mediated or reduction-sensitive. These studies thus shed light on the novel regulatory features employed to regulate metabolite flow through the last step of a critical biosynthetic pathway by keeping the latter catalytically dormant till the need arises, the transition to the active form affected by a delicate crosstalk between an essential cellular metabolite (CTP) and the precursor to the pathway end-product (DCoA).
Resumo:
The present study was undertaken to assess the role of reactive oxygen species (ROS) in rat aortic ring vasoreactivity and integrity by using various peroxovanadate (pV) compounds. All the pV compounds (1 nM-300 mu M) used in the present study exerted concentration-dependent contractions on endothelium intact rat aortic rings. All compounds with an exception of DPV-asparagine (DPV-asn) significantly altered vascular integrity as shown by diminished KCl responses. Phenylephrine (PE)-mediated contractions (3 nM-300 mu M) were unaltered in the presence of these compounds. Acetylcholine (Ach)-mediated relaxation in PE (1 mu M) pre-contracted rings was significantly reduced in presence of diperoxovanadate (DPV), poly (sodium styrene sulfonate-co-maleate)-pV (PSS-CoM-pV) and poly (sodium styrene 4-sulfonate)-pV (PSS-pV). However, no significant change in Ach-mediated responses was observed in the presence of poly (acrylate)-pV (PM-pV) and DPV-asn. DPV-asn was thus chosen to further elucidate mechanism involved in peroxide mediated modulation of vasoreactivity. DPV-asn (30 nM-300 mu M) exerted significantly more stable contractions, that was found to be catalase (100 U/ml) resistant in comparison with H(2)O(2) (30 nM-300 mu M) in endothelium intact aortic rings. These contractile responses were found to be dependent on extracellular Ca(2+) and were significantly inhibited in presence of ROS scavenger N-acetylcysteine (100 mu M). Intracellular calcium chelation by BAPTA-AM (10 mu M) had no significant effect on DPV-asn (30 nM-300 mu M) mediated contraction. Pretreatment of aortic rings by rho-kinase inhibitor Y-27632 (10 mu M) significantly inhibited DPV-asn-mediated vasoconstriction indicating role of voltage-dependent Ca(2+) influx and downstream activation of rho-kinase. The small initial relaxant effect obtained on addition of DPV-asn (30 nM-1 mu M) in PE (1 mu M) pre-contracted endothelium intact rings, was prevented in the presence of guanylate cyclase inhibitor, methylene blue (10 mu M) and/or nitric oxide synthase (NOS) inhibitor, L-NAME (100 mu M) suggesting involvement of nitric oxide and cGMP. DPV-asn, like H(2)O(2), exerted a response of vasoconstriction in normal arteries and vasodilation at low concentrations (30 nM-1 mu M) in PE-pre contracted rings with overlapping mechanisms. These findings suggest usefulness of DPV-asn having low toxicity, in exploring the peroxide-mediated effects on various vascular beds. The present study also convincingly demonstrates role of H(2)O(2) in the modulation of vasoreactivity by using stable peroxide DPV-asn and warrants future studies on peroxide mediated signaling from a newer perspective. (C) 2011 Published by Elsevier Ltd.
Resumo:
Glioblastoma is the most common and malignant form of primary astrocytoma. Upon investigation of the insulin-like growth factor (IGF) pathway, we found the IGF2BP3/IMP3 transcript and protein to be up-regulated in GBMs but not in lower grade astrocytomas (p<0.0001). IMP3 is an RNA binding protein known to bind to the 5'-untranslated region of IGF-2 mRNA, thereby activating its translation. Overexpression-and knockdown-based studies establish a role for IMP3 in promoting proliferation, anchorage-independent growth, invasion, and chemoresistance. IMP3 overexpressing B16F10 cells also showed increased tumor growth, angiogenesis, and metastasis, resulting in poor survival in a mouse model. Additionally, the infiltrating front, perivascular, and subpial regions in a majority of the GBMs stained positive for IMP3. Furthermore, two different murine glioma models were used to substantiate the above findings. In agreement with the translation activation functions of IMP3, we also found increased IGF-2 protein in the GBM tumor samples without a corresponding increase in its transcript levels. Also, in vitro IMP3 overexpression/knockdown modulated the IGF-2 protein levels without altering its transcript levels. Additionally, IGF-2 neutralization and supplementation studies established that the proproliferative effects of IMP3 were indeed mediated through IGF-2. Concordantly, PI3K and MAPK, the downstream effectors of IGF-2, are activated by IMP3 and are found to be essential for IMP3-induced cell proliferation. Thus, we have identified IMP3 as a GBM-specific proproliferative and proinvasive marker acting through IGF-2 resulting in the activation of oncogenic PI3K and MAPK pathways.
Resumo:
Nucleoside diphosphate kinases (NDK) are characterized by high catalytic turnover rates and diverse substrate specificity. These features make this enzyme an effective activator of a pro-drug an application that has been actively pursued for a variety of therapeutic strategies. The catalytic mechanism of this enzyme is governed by a conserved histidine that coordinates a magnesium ion at the active site. Despite substantial structural and biochemical information on NDK, the mechanistic feature of the phospho-transfer that leads to auto-phosphorylation remains unclear. While the role of the histidine residue is well documented, the other active site residues, in particular the conserved serine remains poorly characterized. Studies on some homologues suggest no role for the serine residue at the active site, while others suggest a crucial role for this serine in the regulation and quaternary association of this enzyme in some species. Here we report the biochemical features of the Staphylococcus aureus NDK and the mutant enzymes. We also describe the crystal structures of the apo-NDK, as a transition state mimic with vanadate and in complex with different nucleotide substrates. These structures formed the basis for molecular dynamics simulations to understand the broad substrate specificity of this enzyme and the role of active site residues in the phospho-transfer mechanism and oligomerization. Put together, these data suggest that concerted changes in the conformation of specific residues facilitate the stabilization of nucleotide complexes thereby enabling the steps involved in the ping-pong reaction mechanism without large changes to the overall structure of this enzyme. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Dendritic cells (DCs) as sentinels of the immune system are important for eliciting both primary and secondary immune responses to a plethora of microbial pathogens. Cooperative stimulation of a complex set of pattern-recognition receptors, including TLR2 and nucleotide-binding oligomerization domain (NOD)-like receptors on DCs, acts as a rate-limiting factor in determining the initiation and mounting of the robust immune response. It underscores the need for ``decoding'' these multiple receptor interactions. In this study, we demonstrate that TLR2 and NOD receptors cooperatively regulate functional maturation of human DCs. Intriguingly, synergistic stimulation of TLR2 and NOD receptors renders enhanced refractoriness to TGF-beta- or CTLA-4-mediated impairment of human DC maturation. Signaling perturbation data suggest that NOTCH1-PI3K signaling dynamics assume critical importance in TLR2- and NOD receptor-mediated surmounting of CTLA-4- and TGF-beta -suppressed maturation of human DCs. Interestingly, the NOTCH1-PI3K signaling axis holds the capacity to regulate DC functions by virtue of PKC delta-MAPK-dependent activation of NF-kappa B. This study provides mechanistic and functional insights into TLR2-and NOD receptor-mediated regulation of DC functions and unravels NOTCH1-PI3K as a signaling cohort for TLR2 and NOD receptors. These findings serve in building a conceptual foundation for the design of improved strategies for adjuvants and immunotherapies against infectious diseases.
Resumo:
Previous studies of complexes of Mycobacterium tuberculosis PanK (MtPanK) with nucleotide diphosphates and non-hydrolysable analogues of nucleoside triphosphates in the presence or the absence of pantothenate established that the enzyme has dual specificity for ATP and GTP, revealed the unusual movement of ligands during enzyme action and provided information on the effect of pantothenate on the location and conformation of the nucleotides at the beginning and the end of enzyme action. The X-ray analyses of the binary complexes of MtPanK with pantothenate, pantothenol and N-nonylpantothenamide reported here demonstrate that in the absence of nucleotide these ligands occupy, with a somewhat open conformation, a location similar to that occupied by phosphopantothenate in the `end' complexes, which differs distinctly from the location of pantothenate in the closed conformation in the ternary `initiation' complexes. The conformation and the location of the nucleotide were also different in the initiation and end complexes. An invariant arginine appears to play a critical role in the movement of ligands that takes place during enzyme action. The work presented here completes the description of the locations and conformations of nucleoside diphosphates and triphosphates and pantothenate in different binary and ternary complexes, and suggests a structural rationale for the movement of ligands during enzyme action. The present investigation also suggests that N-alkylpantothenamides could be phosphorylated by the enzyme in the same manner as pantothenate.