926 resultados para Phenylpropanoid biosynthetic pathway
Resumo:
Glucose modulates plant metabolism, growth, and development. In Arabidopsis (Arabidopsis thaliana), Hexokinase1 (HXK1) is a glucose sensor that may trigger abscisic acid (ABA) synthesis and sensitivity to mediate glucose-induced inhibition of seedling development. Here, we show that the intensity of short-term responses to glucose can vary with ABA activity. We report that the transient (2 h/4 h) repression by 2% glucose of AtbZIP63, a gene encoding a basic-leucine zipper (bZIP) transcription factor partially involved in the Snf1-related kinase KIN10-induced responses to energy limitation, is independent of HXK1 and is not mediated by changes in ABA levels. However, high-concentration (6%) glucose-mediated repression appears to be modulated by ABA, since full repression of AtbZIP63 requires a functional ABA biosynthetic pathway. Furthermore, the combination of glucose and ABA was able to trigger a synergistic repression of AtbZIP63 and its homologue AtbZIP3, revealing a shared regulatory feature consisting of the modulation of glucose sensitivity by ABA. The synergistic regulation of AtbZIP63 was not reproduced by an AtbZIP63 promoter-5`-untranslated region:beta-glucuronidase fusion, thus suggesting possible posttranscriptional control. A transcriptional inhibition assay with cordycepin provided further evidence for the regulation of mRNA decay in response to glucose plus ABA. Overall, these results indicate that AtbZIP63 is an important node of the glucose-ABA interaction network. The mechanisms by which AtbZIP63 may participate in the fine-tuning of ABA-mediated abiotic stress responses according to sugar availability (i.e., energy status) are discussed.
Resumo:
The morphophysiological changes that occur during oocyte primary growth in Serrasalmus spilopleura were studied using ultrastructural cytochemical techniques. In the previtellogenic oocytes endoplasmic reticulum components, Golgi complex cisternae and vesicles, lysosomes, multivesicular bodies and some electron-dense vesicles react to acid phosphatase (AcPase) detection. The endoplasmic reticulum components, Golgi complex cisternae and vesicles also react to osmium tetroxide and potassium iodide impregnation (KI). These structures, except for the Golgi complex cisternae, are strongly contrasted by osmium tetroxide and zinc iodide impregnation (ZIO). Some electron-dense vesicles are ZIO-stained, while microvesicles in the multivesicular bodies and other large isolated cytoplasmic vesicles are contrasted by KI. At primary oocyte growth, the activity of the endomembranous system and the proliferation of membranous organelles are intense. The biosynthetic pathway of the lysosomal proteins such as acid phosphatase, involves the endoplasmic reticulum, Golgi complex, vesicles with inactive hydrolytic enzymes and, finally, the lysosomes. The oocyte endomembranous system have reduction capacity and are involved in the metabolism of rich in SH groups. (c) 2005 Published by Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Tuberculosis (TB) poses a major worldwide public health problem. The increasing prevalence of TB, the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, the causative agent of TB, and the devastating effect of co-infection with HIV have highlighted the urgent need for the development of new antimycobacterial agents. Analysis of the complete genome sequence of M. tuberculosis shows the presence of genes involved in the aromatic amino acid biosynthetic pathway. Experimental evidence that this pathway is essential for M. tuberculosis has been reported. The genes and pathways that are essential for the growth of the microorganisms make them attractive drug targets since inhibiting their function may kill the bacilli. We have previously cloned and expressed in the soluble form the fourth shikimate pathway enzyme of the M. tuberculosis, the aroE-encoded shikimate dehydrogenase (mtSD). Here, we present the purification of active recombinant aroE-encoded M. tuberculosis shikimate dehydrogenase (mtSD) to homogeneity, N-terminal sequencing, mass spectrometry, assessment of the oligomeric state by gel filtration chromatography, determination of apparent steady-state kinetic parameters for both the forward and reverse directions, apparent equilibrium constant, thermal stability, and energy of activation for the enzyme-catalyzed chemical reaction. These results pave the way for structural and kinetic studies, which should aid in the rational design of mtSD inhibitors to be tested as antimycobacterial agents. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The endomembranous system of Serrasalmus spilopleura oocyte secondary growth was analysed using structural and ultrastructural cytochemical techniques. In vitellogenic oocytes, the endoplasmic reticulum components, the nuclear envelope intermembranous space, some Golgi dictiossomes, lysosomes, yolk granules, regions of the egg envelope and sites of the follicle cells react to acid phosphatase detection (AcPase). The cortical alveoli, some heterogeneous cytoplasmic structures, regions of the egg envelope, and sites of the follicle cells are strongly contrasted by osmium tetroxide and zinc iodide impregnation (ZIO). The endoplasmic reticulum components, some vesicles, and sites of the follicle cells also react to osmium tetroxide and potassium iodide impregnation (KI). The biosynthetic pathway of lysosomal proteins, such as acid phosphatase, required for vitellogenesis, involves the endoplasmic reticulum, Golgi complex, vesicles with inactive hydrolytic enzymes, and, finally, lysosomes. In S. spilopleura oocytes at secondary growth, the endomembranous system takes part in the production of the enzymes needed for vitellogenesis, and in the metabolism of yolk exogenous components (AcPase detection). The endomembranous system compartments also show reduction capacity (KI reaction) and are involved in the metabolism of proteins rich in SH-groups (ZIO reaction).
Resumo:
The N-linked glycosylation of secretory and membrane proteins is the most complex posttranslational modification known to occur in eukaryotic cells. It has been shown to play critical roles in modulating protein function. Although this important biological process has been extensively studied in mammals, much less is known about this biosynthetic pathway in plants. The enzymes involved in plant N-glycan biosynthesis and processing are still not well defined and the mechanism of their genetic regulation is almost completely unknown. In this paper we describe our first attempt to understand the N-linked glycosylation mechanism in a plant species by using the data generated by the Sugarcane Expressed Sequence Tag (SUCEST) project. The SUCEST database was mined for sugarcane gene products potentially involved in the N-glycosylation pathway. This approach has led to the identification and functional assignment of 90 expressed sequence tag (EST) clusters sharing significant sequence similarity with the enzymes involved in N-glycan biosynthesis and processing. The ESTs identified were also analyzed to establish their relative abundance.
Resumo:
Pós-graduação em Ciências Biológicas (Farmacologia) - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Nicotinamide adenine dinucleotide (NAD) is a ubiquitous cofactor participating in numerous redox reactions. It is also a substrate for regulatory modifications of proteins and nucleic acids via the addition of ADP-ribose moieties or removal of acyl groups by transfer to ADP-ribose. In this study, we use in-depth sequence, structure and genomic context analysis to uncover new enzymes and substrate-binding proteins in NAD-utilizing metabolic and macromolecular modification systems. We predict that Escherichia coli YbiA and related families of domains from diverse bacteria, eukaryotes, large DNA viruses and single strand RNA viruses are previously unrecognized components of NAD-utilizing pathways that probably operate on ADP-ribose derivatives. Using contextual analysis we show that some of these proteins potentially act in RNA repair, where NAD is used to remove 2'-3' cyclic phosphodiester linkages. Likewise, we predict that another family of YbiA-related enzymes is likely to comprise a novel NAD-dependent ADP-ribosylation system for proteins, in conjunction with a previously unrecognized ADP-ribosyltransferase. A similar ADP-ribosyltransferase is also coupled with MACRO or ADP-ribosylglycohydrolase domain proteins in other related systems, suggesting that all these novel systems are likely to comprise pairs of ADP-ribosylation and ribosylglycohydrolase enzymes analogous to the DraG-DraT system, and a novel group of bacterial polymorphic toxins. We present evidence that some of these coupled ADP-ribosyltransferases/ribosylglycohydrolases are likely to regulate certain restriction modification enzymes in bacteria. The ADP-ribosyltransferases found in these, the bacterial polymorphic toxin and host-directed toxin systems of bacteria such as Waddlia also throw light on the evolution of this fold and the origin of eukaryotic polyADP-ribosyltransferases and NEURL4-like ARTs, which might be involved in centrosomal assembly. We also infer a novel biosynthetic pathway that might be involved in the synthesis of a nicotinate-derived compound in conjunction with an asparagine synthetase and AMPylating peptide ligase. We use the data derived from this analysis to understand the origin and early evolutionary trajectories of key NAD-utilizing enzymes and present targets for future biochemical investigations.
Resumo:
Dihydroorotate dehydrogenase (DHODH) is the fourth enzyme in the de novo pyrimidine biosynthetic pathway and has been exploited as the target for therapy against proliferative and parasitic diseases. In this study, we report the crystal structures of DHODH from Leishmania major, the species of Leishmania associated with zoonotic cutaneous leishmaniasis, in its apo form and in complex with orotate and fumarate molecules. Both orotate and fumarate were found to bind to the same active site and exploit similar interactions, consistent with a ping-pong mechanism described for class 1A DHODHs. Analysis of LmDHODH structures reveals that rearrangements in the conformation of the catalytic loop have direct influence on the dimeric interface. This is the first structural evidence of a relationship between the dimeric form and the catalytic mechanism. According to our analysis, the high sequence and structural similarity observed among trypanosomatid DHODH suggest that a single strategy of structure-based inhibitor design can be used to validate DHODH as a druggable target against multiple neglected tropical diseases such as Leishmaniasis, Sleeping sickness and Chagas' diseases. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Abstract Background Many important toxins and antibiotics are produced by non-ribosomal biosynthetic pathways. Microcystins are a chemically diverse family of potent peptide toxins and the end-products of a hybrid NRPS and PKS secondary metabolic pathway. They are produced by a variety of cyanobacteria and are responsible for the poisoning of humans as well as the deaths of wild and domestic animals around the world. The chemical diversity of the microcystin family is attributed to a number of genetic events that have resulted in the diversification of the pathway for microcystin assembly. Results Here, we show that independent evolutionary events affecting the substrate specificity of the microcystin biosynthetic pathway have resulted in convergence on a rare [D-Leu1] microcystin-LR chemical variant. We detected this rare microcystin variant from strains of the distantly related genera Microcystis, Nostoc, and Phormidium. Phylogenetic analysis performed using sequences of the catalytic domains within the mcy gene cluster demonstrated a clear recombination pattern in the adenylation domain phylogenetic tree. We found evidence for conversion of the gene encoding the McyA2 adenylation domain in strains of the genera Nostoc and Phormidium. However, point mutations affecting the substrate-binding sequence motifs of the McyA2 adenylation domain were associated with the change in substrate specificity in two strains of Microcystis. In addition to the main [D-Leu1] microcystin-LR variant, these two strains produced a new microcystin that was identified as [Met1] microcystin-LR. Conclusions Phylogenetic analysis demonstrated that both point mutations and gene conversion result in functional mcy gene clusters that produce the same rare [D-Leu1] variant of microcystin in strains of the genera Microcystis, Nostoc, and Phormidium. Engineering pathways to produce recombinant non-ribosomal peptides could provide new natural products or increase the activity of known compounds. Our results suggest that the replacement of entire adenylation domains could be a more successful strategy to obtain higher specificity in the modification of the non-ribosomal peptides than point mutations.
Resumo:
Abstrakt - DeutschThema: Reinigung der Vinorin-Synthase aus Zellkulturen von Rauvolfia serpentina Die Arbeit befaßte sich mit der Reinigung und Charakterisierung des Enzyms Vinorin-Synthase aus Zellkulturen von Rauvolfia serpentina. Dieses Acetyl-Coenzym-A-abhängige Enzym katalysiert im Biosyntheseweg des Alkaloids Ajmalin die Umwandlung von 16-epi-Vellosimin zu Vinorin. Mit Hilfe eines neu entwickelten Enzymaktivitätstests ist eine einfache und schnelle qualitative sowie quantitative Bestimmung der Aktivität der Vinorin-Synthase möglich. Das Molekulargewicht der Vinorin-Synthase wurde durch Größenausschlußchromatographie an Superdex 75 zu 43 kD ermittelt. Das entwickelte Reinigungsschema mit den vier säulenchromatographischen Reinigungsschritten Anionenaustauschchromatographie an SOURCE 30Q, Chromatographie an Hydroxyapatit, Anionenaustauschchromatographie an Mono Q und Chromatofokussierung an Mono P führte zu einer 340fachen Anreicherung der Vinorin-Synthase. Das nach der Reinigung durchgeführten gelelektrophoretischen Untersuchungen ermöglichten keine Zuordnung einer Bande zur Bande der Vinorin-Synthase. Mögliche Ursachen für die Nichtzuordnung einer Bande im SDS-Gel zur Vinorin-Synthase sind in einer möglichen Überlagerung eines Fremdprotein mit der Vinorin-Synthase, eine niedrige Expression der Vinorin-Synthase, die eine deutlich bessere Anreicherung erfordern würde oder der Aufbau des Proteins aus Untereinheiten, in die es während der Behandlung mit SDS zerfällt, gegeben.
Resumo:
Grünalgen bilden zur Überdauerung schlechter Umweltbedingungen Ruhestadien, die sich durch Ausbildung einer festen Zellwand, die Reduktion des Plastiden und die starke Akkumulation von Speicherfetten und Ketocarotinoiden im Zytosol auszeichnen. Obwohl Ketocarotinoide in Grünalgen seit über vierzig Jahren beforscht werden, gab es hierzu noch wenige molekularbiologische Untersuchungen. Im Vorfeld meiner Promotion wurde durch unsere Arbeitsgruppe entdeckt, dass auch der molekular gut zugängliche Modellorganismus Chlamydomonas reinhardtii im Zygotenstadium große Mengen an Ketocarotinoiden bildet. Neben dem zu erwartenden Ketocarotinoid Astaxanthin fanden wir große Mengen des bisher nur in einer Grünalge beschriebenen 4-Ketoluteins. Vorversuche ließen die Vermutung aufkommen, dass dieses Pigment bei der Untersuchung der Pigmentausstattung in Dauerstadien von vielen Grünalgen bisher übersehen wurde. rnIn der vorliegenden Arbeit wurde daher zunächst die Pigmentzusammensetzung von Dauerstadien der bereits gut untersuchten Grünalgen Muriella zofingiensis und Scenedesmus rubescens durch Vergleich mit dem Ketocarotinoidmuster aus Dauerstadien von C. reinhardtii und Fritschiella tuberosa reevaluiert und dabei erstmals das Vorkommen signifikanter Mengen an 4-Ketolutein nachgewiesen. Außerdem zeigte sich, dass die als bisheriger Modellorganismus der Ketocarotinoidbiosynthese in Grünalgen sehr gut untersuchte Alge Haematococcus pluvialis eher eine Ausnahme darstellt, da ihre Dauerstadien als einzige der hier untersuchten Algen nur minimale Mengen von 4 Ketolutein aufwiesen. Diese Beobachtungen machen es sehr wahrscheinlich, dass die Fähigkeit zur Bildung von 4-Ketolutein unter den Grünalgen wesentlich weiter verbreitet ist als bisher angenommen. Das sekundäre Carotinoid 4-Ketolutein kam in den Dauerstadien der Grünalgen neben seiner freien Form ausschließlich als Monoacylester vor, im Gegensatz zu Astaxanthin, das als mono- und diacylierte Form auftrat. rnÜber die Analyse der Pigmentausstattung hinaus konnten die entscheidenden Schritte des Synthesewegs der Ketocarotinoide in C. reinhardtii durch funktionelle Charakterisierung der beteiligten Enzyme in Bakterien aufgeklärt werden. Als Basis für die Charakterisierungen wurde ein umfangreiches Portfolio von carotinogenen E. coli-Bakterien etabliert, darunter α Carotin und Lutein produzierende Stämme, die bisher nicht zur Verfügung standen. Das wurde durch die Klonierung der Lycopinzyklase (OluLCY) aus der Grünalge Ostreococcus lucimarinus möglich, die eine Sonderolle unter den Zyklasen einnimmt, da sie die Lycopin-β-Zyklase und Lycopin-ε-Zyklase in einem Fusionsenzym vereint. Vorteile dieses Fusionsenzyms sind die Expressionskontrolle durch nur einen Promotor und die weitgehend konstante Stöchiometrie seiner Produkte α-Carotin und β-Carotin, was die OluLCY für die biotechnologische Anwendung prädestiniert.rnDie funktionelle Charakterisierung der Carotinoidbiosyntheseenzyme aus C. reinhardtii umfasste das Schlüsselenzym der Ketocarotinoidbiosynthese, die β-Carotin-Ketolase (BKT), sowie die Carotinoid-Hydroxylasen CHYB, CYP97A5 und CYP97C3. Dabei wurde für das BKT-Enzym aus C. reinhardtii nachgewiesen, dass es nicht nur die Ketolierung von β Carotin zu Canthaxanthin und von Zeaxanthin zu Astaxanthin, sondern auch die Bildung der von α-Carotin abgeleiteten Ketocarotinoide wie 4-Keto-α-Carotin und 4 Ketolutein katalysieren kann.rn