975 resultados para Performance of construction materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

International comparisons of construction industry performance are notoriously difficult. A recent comparative study, extensive in scope and using an innovative approach, is reviewed and questions raised regarding various aspects of the methodology adopted, the validity of the conclusions drawn and manner in which outcomes were reported. Particular areas of concern include the unequivocal statement of conclusions that are based on a small sample, and the use of data from that sample that are, in fact, no more than estimates of project performance. Attention is drawn to the limitations of the research reported and the reliability of the methods used, and the data gathered is examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While there have been many attempts at comparisons of construction performance over the past 50 years, the results have generally been inconclusive and/or contradictory.

Such comparisons are of great interest to industry, governments and theorists alike but there is little agreement as to how they are best done. A variety of methodologies have been used, however, the lack of satisfactory outcomes has been due largely to one factor, the lack of a truly reliable method for comparing construction costs in different currencies

Exchange rates are recognised as being unsuitable, and while purchasing power parity (PPP) has a long history, the method still has many critics. In addition, the nature of the building industry and its products makes the establishment of reliable construction PPPs very difficult. Both the UN’s International Comparison Program (ICP) and the European Union gather data for the production of construction-specific PPP indices, but neither body publishes them, as there is too much doubt about their reliability.

New approaches are being developed and some are soon to be trialled. This paper looks at the problems, describes and discusses some new approaches, and assesses their potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The threat of dangerous levels of global warming demand that we significantly reduce carbon emissions over the coming decades. Globally, carbon emissions from all energy end-uses in buildings in 2004 were estimated to be 8.6 Gt CO2 or almost one quarter of total CO2 emissions (IPCC 2007). In Australia, nearly ten per cent of greenhouse gases come from the residential sector (DCCEE 2012). However, it is not merely the operation of the buildings that contributes to their CO2 emissions, but the energy used over their entire life cycle. Research has demonstrated that the embodied energy of the construction materials used in a building can sometimes equal the operational energy over the building’s entire lifetime (Crawford 2011). Therefore the materials used in construction need to be carefully considered. Conventional building materials not only represent high levels of embodied energy but also use resources that are finite and are being depleted. Renewable building materials are those materials that can be regenerated quickly enough to remove the threat of depletion and in theory their production could be carbon-neutral. To assess the potential for renewable building materials to reduce the embodied energy content of residential construction, the embodied energy of a small residential building has been determined. Wherever possible, the conventional construction materials were then replaced by commercially-available renewable building materials. The embodied energy of the building was then recalculated. The analysis showed that the embodied energy of the building could be reduced from 7.5 GJ per m2 to 5.4 GJ per m2 i.e. by 28%. The commercial availability of renewable materials, however, was a limiting factor and indicated that the industry is not yet well positioned to embrace this strategy to reduce embodied energy of construction. While some conventional building materials could readily be replaced, in many instances a renewable substitute could not be found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research is concerned with the comparative cost of building structural frames in Australia. The research has been undertaken to evaluate the cost performance of a number of technologies that are typically used in medium-rise commercial buildings of ten storeys. The research methodology is based on pricing a number of standard building frame designs in five Australian cities. The results represent the cost of producing the same building using different building construction designs. By utilising a standard model, project variables like building quality, ground conditions and access were eradicated, thereby facilitating an unbiased comparison of cost performance. The second stage of the research invoiced a focus group of industry experts who were asked to validate the results of the cost study. In addition, participants of the focus group were asked to comment on the preferred construction practice for each of the typical building designs. Results suggest that post-tensioned in situ concrete frames have the best cost performance for most buildings. However, other designs can have good cost performance under some circumstances. Findings suggest that the Australian construction industry has long cultural preference for the use of in situ concrete in structural frames.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outcome of the research is to identify significant factors influencing the productivity and performance of the road construction industry in Sri Lanka and to compare the identified factors with the Australian construction industry. Also to recommend strategies to improve productivity and performance of the Sri Lankan Industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LiFe1-xMnxPO4/C composite materials as cathode materials in Li-ion batteries have been synthesised and their electrochemical properties have been investigated. The samples were synthesised by using high energy ball milling of commercially available precursors (Li2C2O4, FeC2O4.2H2O, MnC2O4.2H2O, NH4H2PO4) and then heated at 600°C. The morphology and structure of the heated samples were analysed by means of SEM and X-ray diffraction. The olivine structure of the LiFe1-xMnxPO4/C composite was obtained. A slight shift of the peaks to smaller 2θ angles with the increasing Mn/Fe ratios is observed due to the increase in lattice parameters. The influence of different Mn/Fe ratios on electrical and electrochemical performances were studied by charge-discharge and cyclic voltammetry (CV) testing. The CV curves of the pure LiFePO4 and LiMnPO4 show the expected Fe2+/Fe3+ peak around 3·5 V and Mn2+/Mn3+ peak around 4·1 V, respectively. The addition of manganese increases the discharge voltage from 3·5 to 4·1 V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon coated LiFe0·4Mn0·6PO4 (LiFe0·4Mn0·6PO4/C) was synthesised using high energy ball milling and annealing processes. The starting materials of Li2C2O4, FeC2O4.2H2O, MnC2O4.2H2O, NH4H2PO4 were firstly milled for 40 h, and followed by further milling for 5 h after adding glucose solution. The milled sample was heated at different temperatures (550, 600, 650 and 700°C) for 10 h to produce LiFe0·4Mn0·6PO4/C composites. The structure and morphology of the samples were investigated using X-ray diffraction, field emission scanning electron microscopy, and high resolution electron microscopy. The phase of samples annealed at 550 and 600°C mainly consists of olivine type LiFePO4, but a small amount of Fe2P impurity phase is formed in the samples annealed at 650 and 700°C. Electrochemical analysis results show that LiFe0·4Mn0·6PO4/C synthesised at 600°C exhibits the best performance with the initial discharge capacity of 128 mAh g-1 at 0·1 C, and 109 mAh g-1 at 1 C after 500 cycles. The LiFe0·4Mn0·6PO4/C exhibits excellent electrochemical properties for high energy density lithium ion batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nephelometric technique based on a liquid drop is described for the measurement of atmospheric sulfur dioxide. A 40-mul drop of barium chloride and hydrogen peroxide solution is suspended in a flowing-air sampling stream. The sulfur (IV) collected is oxidized to sulfur (VI) and finally precipitated as barium sulfate. Nephelometric detection of drop is achieved by an appropriate arrangement consisting of an optical fiber contacting the drop and a photodiode placed at 90degrees relative to the fiber. The design and characteristics of this drop-based gas sensor system are described. The analytical response, as photocurrent, is proportional to the product of the sampling period and the sulfur dioxide concentration. The detection limit is ca. 1.1 mg m(-3) for a 10-min sampling time. The present technique is fairly rapid and simple, uses a small amount of reagent and is set up with low-cost equipment, making this system economically viable. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Tropical regions, the animal performance is often affected by climate conditions. This study aimed to evaluate covering materials in individual shelters, normally used to house dairy calves, and its influence on the calves physiology and performance. The design used was completely randomized, with a 2x3 factorial arrangement to compare the averages of 5% through the Tukey's test, i.e., both genders-and three types of covering in the shelters (Z - zinc; AC - asbestos cement; and WPAC - white-painted asbestos cement). Parameters evaluated included daily weight gain (DWG), dry matter intake (DMI), feed conversion (FC), rectal temperature (RT), and respiratory frequency (RF). Results showed significant differences (P < 0.05) among males (1.04kg/day) and females (0.74kg/day) for DWG and interaction between gender and treatment (P < 0.05) for zinc covering (0.562kg/day for females and 1.120kg/day for males). Significant differences were also observed in FI of animals housed under shelters with the covering of zinc (48.35kgDM/day for females and 96.91 kgDM/day for males). There were no significant differences (P > 0.05) in the FC and the RT, and there were significant differences (P < 0.05) for RF in the Z treatments (56.9 mov.min(-1)), WPAC (62.2 mov.min(-1)) and FC (70.25 mov.min-1). It was concluded that different covering materials did not affect performance and dry matter intake of dairy calves. However, the animals' physiology of thermoregulation was altered by the different covering materials used in individual shelters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To compare the alterations in esthetic appearance and slot morphology/integrity of two main types of esthetic brackets caused after clinical use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterogeneous materials are ubiquitous in nature and as synthetic materials. These materials provide unique combination of desirable mechanical properties emerging from its heterogeneities at different length scales. Future structural and technological applications will require the development of advanced light weight materials with superior strength and toughness. Cost effective design of the advanced high performance synthetic materials by tailoring their microstructure is the challenge facing the materials design community. Prior knowledge of structure-property relationships for these materials is imperative for optimal design. Thus, understanding such relationships for heterogeneous materials is of primary interest. Furthermore, computational burden is becoming critical concern in several areas of heterogeneous materials design. Therefore, computationally efficient and accurate predictive tools are highly essential. In the present study, we mainly focus on mechanical behavior of soft cellular materials and tough biological material such as mussel byssus thread. Cellular materials exhibit microstructural heterogeneity by interconnected network of same material phase. However, mussel byssus thread comprises of two distinct material phases. A robust numerical framework is developed to investigate the micromechanisms behind the macroscopic response of both of these materials. Using this framework, effect of microstuctural parameters has been addressed on the stress state of cellular specimens during split Hopkinson pressure bar test. A voronoi tessellation based algorithm has been developed to simulate the cellular microstructure. Micromechanisms (microinertia, microbuckling and microbending) governing macroscopic behavior of cellular solids are investigated thoroughly with respect to various microstructural and loading parameters. To understand the origin of high toughness of mussel byssus thread, a Genetic Algorithm (GA) based optimization framework has been developed. It is found that two different material phases (collagens) of mussel byssus thread are optimally distributed along the thread. These applications demonstrate that the presence of heterogeneity in the system demands high computational resources for simulation and modeling. Thus, Higher Dimensional Model Representation (HDMR) based surrogate modeling concept has been proposed to reduce computational complexity. The applicability of such methodology has been demonstrated in failure envelope construction and in multiscale finite element techniques. It is observed that surrogate based model can capture the behavior of complex material systems with sufficient accuracy. The computational algorithms presented in this thesis will further pave the way for accurate prediction of macroscopic deformation behavior of various class of advanced materials from their measurable microstructural features at a reasonable computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traditional teaching methods used for training civil engineers are currently being called into question as a result of the new knowledge and skills now required by the labor market. In addition, the European Higher Education Area is requesting that students be given a greater say in their learning. In the subject called Construction and Building Materials at the Civil Engineering School of the Universidad Politécnica de Madrid, a path was set three academic years ago to lead to an improvement in traditional teaching by introducing active methodologies. The innovations are based on cooperative learning, new technologies, and continuous assessment. The writers’ proposal is to offer their experience as a contribution to the debate on how students can be encouraged to acquire the skills currently demanded from a civil engineer, though not overlooking solid, top-quality training. From the outcomes obtained, it can be concluded that using new teaching techniques to supplement a traditional approach provides more opportunities for students to learn while boosting their motivation. In our case, the introduction of these changes has resulted in an increased pass rate of 29% on average, when such a figure is considered in the light of the mean value of passes during the last decade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El propósito de esta tesis es estudiar la aproximación a los fenómenos de transporte térmico en edificación acristalada a través de sus réplicas a escala. La tarea central de esta tesis es, por lo tanto, la comparación del comportamiento térmico de modelos a escala con el correspondiente comportamiento térmico del prototipo a escala real. Los datos principales de comparación entre modelo y prototipo serán las temperaturas. En el primer capítulo del Estado del Arte de esta tesis se hará un recorrido histórico por los usos de los modelos a escala desde la antigüedad hasta nuestro días. Dentro de éste, en el Estado de la Técnica, se expondrán los beneficios que tiene su empleo y las dificultades que conllevan. A continuación, en el Estado de la Investigación de los modelos a escala, se analizarán artículos científicos y tesis. Precisamente, nos centraremos en aquellos modelos a escala que son funcionales. Los modelos a escala funcionales son modelos a escala que replican, además, una o algunas de las funciones de sus prototipos. Los modelos a escala pueden estar distorsionados o no. Los modelos a escala distorsionados son aquellos con cambios intencionados en las dimensiones o en las características constructivas para la obtención de una respuesta específica por ejemplo, replicar el comportamiento térmico. Los modelos a escala sin distorsión, o no distorsionados, son aquellos que mantienen, en la medida de lo posible, las proporciones dimensionales y características constructivas de sus prototipos de referencia. Estos modelos a escala funcionales y no distorsionados son especialmente útiles para los arquitectos ya que permiten a la vez ser empleados como elementos funcionales de análisis y como elementos de toma de decisiones en el diseño constructivo. A pesar de su versatilidad, en general, se observará que se han utilizado muy poco estos modelos a escala funcionales sin distorsión para el estudio del comportamiento térmico de la edificación. Posteriormente, se expondrán las teorías para el análisis de los datos térmicos recogidos de los modelos a escala y su aplicabilidad a los correspondientes prototipos a escala real. Se explicarán los experimentos llevados a cabo, tanto en laboratorio como a intemperie. Se han realizado experimentos con modelos sencillos cúbicos a diferentes escalas y sometidos a las mismas condiciones ambientales. De estos modelos sencillos hemos dado el salto a un modelo reducido de una edificación acristalada relativamente sencilla. Los experimentos consisten en ensayos simultáneos a intemperie del prototipo a escala real y su modelo reducido del Taller de Prototipos de la Escuela Técnica Superior de Arquitectura de Madrid (ETSAM). Para el análisis de los datos experimentales hemos aplicado las teorías conocidas, tanto comparaciones directas como el empleo del análisis dimensional. Finalmente, las simulaciones nos permiten comparaciones flexibles con los datos experimentales, por ese motivo, hemos utilizado tanto programas comerciales como un algoritmo de simulación desarrollado ad hoc para esta investigación. Finalmente, exponemos la discusión y las conclusiones de esta investigación. Abstract The purpose of this thesis is to study the approximation to phenomena of heat transfer in glazed buildings through their scale replicas. The central task of this thesis is, therefore, the comparison of the thermal performance of scale models without distortion with the corresponding thermal performance of their full-scale prototypes. Indoor air temperatures of the scale model and the corresponding prototype are the data to be compared. In the first chapter on the State of the Art, it will be shown a broad vision, consisting of a historic review of uses of scale models, from antiquity to our days. In the section State of the Technique, the benefits and difficulties associated with their implementation are presented. Additionally, in the section State of the Research, current scientific papers and theses on scale models are reviewed. Specifically, we focus on functional scale models. Functional scale models are scale models that replicate, additionally, one or some of the functions of their corresponding prototypes. Scale models can be distorted or not. Scale models with distortion are considered scale models with intentional changes, on one hand, in dimensions scaled unevenly and, on the other hand, in constructive characteristics or materials, in order to get a specific performance for instance, a specific thermal performance. Consequently, scale models without distortion, or undistorted scale models scaled evenly, are those replicating, to the extent possible, without distortion, the dimensional proportions and constructive configurations of their prototypes of reference. These undistorted and functional scale models are especially useful for architects because they can be used, simultaneously, as functional elements of analysis and as decision-making elements during the design. Although they are versatile, in general, it is remarkable that these types of models are used very little for the study of the thermal performance of buildings. Subsequently, the theories related to the analysis of the experimental thermal data collected from the scale models and their applicability to the corresponding full-scale prototypes, will be explained. Thereafter, the experiments in laboratory and at outdoor conditions are detailed. Firstly, experiments carried out with simple cube models at different scales are explained. The prototype larger in size and the corresponding undistorted scale model have been subjected to same environmental conditions in every experimental test. Secondly, a step forward is taken carrying out some simultaneous experimental tests of an undistorted scale model, replica of a relatively simple lightweight and glazed building construction. This experiment consists of monitoring the undistorted scale model of the prototype workshop located in the School of Architecture (ETSAM) of the Technical University of Madrid (UPM). For the analysis of experimental data, known related theories and resources are applied, such as, direct comparisons, statistical analyses, Dimensional Analysis and last, but not least important, simulations. Simulations allow us, specifically, flexible comparisons with experimental data. Here, apart the use of the simulation software EnergyPlus, a simulation algorithm is developed ad hoc for this research. Finally, the discussion and conclusions of this research are exposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical porous carbon materials prepared by the direct carbonization of lignin/zeolite mixtures and the subsequent basic etching of the inorganic template have been electrochemically characterized in acidic media. These lignin-based templated carbons have interesting surface chemistry features, such as a variety of surface oxygen groups and also pyridone and pyridinic groups, which results in a high capacitance enhancement compared to petroleum-pitch-based carbons obtained by the same procedure. Furthermore, they are easily electro-oxidized in a sulfuric acid electrolyte under positive polarization to produce a large amount of surface oxygen groups that boosts the pseudocapacitance. The lignin-based templated carbons showed a specific capacitance as high as 250 F g−1 at 50 mA g−1, with a capacitance retention of 50 % and volumetric capacitance of 75 F cm−3 at current densities higher than 20 A g−1 thanks to their suitable porous texture. These results indicate the potential use of inexpensive biomass byproducts, such as lignin, as carbon precursors in the production of hierarchical carbon materials for electrodes in electrochemical capacitors.