794 resultados para Performance and performativity
Resumo:
The study investigates whether there is an association between different combinations of emphasis on generic strategies (product differentiation and cost efficiency) and perceived usefulness of management accounting techniques. Previous research has found that cost leadership is associated with traditional accounting techniques and product differentiation with a variety of modern management accounting approaches. The present study focuses on the possible existence of a strategy that mixes these generic strategies. The empirical results suggest that (a) there is no difference in the attitudes towards the usefulness of traditional management accounting techniques between companies that adhere either to a single strategy or a mixed strategy; (b) there is no difference in the attitudes towards modern and traditional techniques between companies that adhere to a single strategy, whether this is product differentiation or cost efficiency, and c) companies that favour a mixed strategy seem to have a more positive attitude towards modern techniques than companies adhering to a single strategy
Resumo:
In this paper we propose a novel technique to model and ana¿ lyze the performability of parallel and distributed architectures using GSPN-reward models.
Resumo:
A 1.2 V/1.5 Ah positive-limited nickel/metal hydride cell has been studied to determine its charge-discharge characteristics at different rates in conjunction with its AC impedance data. The faradaic efficiency of the cell is found to be maximum at similar to 70% charge input. The cell has been scaled to a 6 V/1.5 Ah battery. The cycle-life data on the battery suggest that it can sustain a prolonged charge-discharge schedule with little deterioration in its performance.
Resumo:
The impact of gate-to-source/drain overlap length on performance and variability of 65 nm CMOS is presented. The device and circuit variability is investigated as a function of three significant process parameters, namely gate length, gate oxide thickness, and halo dose. The comparison is made with three different values of gate-to-source/drain overlap length namely 5 nm, 0 nm, and -5 nm and at two different leakage currents of 10 nA and 100 nA. The Worst-Case-Analysis approach is used to study the inverter delay fluctuations at the process corners. The drive current of the device for device robustness and stage delay of an inverter for circuit robustness are taken as performance metrics. The design trade-off between performance and variability is demonstrated both at the device level and circuit level. It is shown that larger overlap length leads to better performance, while smaller overlap length results in better variability. Performance trades with variability as overlap length is varied. An optimal value of overlap length of 0 nm is recommended at 65 nm gate length, for a reasonable combination of performance and variability.
Resumo:
In this paper, based on the temporal and spatial locality characteristics of memory accesses in multicores, we propose a re-organization of the existing single large row buffer in a DRAM bank into multiple smaller row-buffers. The proposed configuration helps improve the row hit rates and also brings down the energy required for row-activations. The major contribution of this work is proposing such a reorganization without requiring any significant changes to the existing widely accepted DRAM specifications. Our proposed reorganization improves performance by 35.8%, 14.5% and 21.6% in quad, eight and sixteen core workloads along with a 42%, 28% and 31% reduction in DRAM energy. Additionally, we introduce a Need Based Allocation scheme for buffer management that shows additional performance improvement.
Resumo:
Gd2O3-based metal-insulator-metal capacitors have been characterized with single layer (Gd2O3) and bilayer (Gd2O3/Eu2O3 and Eu2O3/Gd2O3) stacks for analog and DRAM applications. Although single layer Gd2O3 capacitors provide highest capacitance density (15 fF/mu m(2)), they suffer from high leakage current density, poor capacitance density-voltage linearity, and reliability. The stacked dielectrics help to reduce leakage current density (1.2x10(-5) A/cm(2) and 2.7 x 10(-5) A/cm(2) for Gd2O3/Eu2O3 and Eu2O3/Gd2O3, respectively, at -1 V), improve quadratic voltage coefficient of capacitance (331 ppm/V-2 and 374 ppm/V-2 for Gd2O3/Eu2O3 and Eu2O3/Gd2O3, respectively, at 1 MHz), and improve reliability, with a marginal reduction in capacitance density. This is attributed to lower trap heights as determined from Poole-Frenkel conduction mechanism, and lower defect density as determined from electrode polarization model.
Resumo:
A supply chain ecosystem consists of the elements of the supply chain and the entities that influence the goods, information and financial flows through the supply chain. These influences come through government regulations, human, financial and natural resources, logistics infrastructure and management, etc., and thus affect the supply chain performance. Similarly, all the ecosystem elements also contribute to the risk. The aim of this paper is to identify both performances-based and risk-based decision criteria, which are important and critical to the supply chain. A two step approach using fuzzy AHP and fuzzy technique for order of preference by similarity to ideal solution has been proposed for multi-criteria decision-making and illustrated using a numerical example. The first step does the selection without considering risks and then in the next step suppliers are ranked according to their risk profiles. Later, the two ranks are consolidated into one. In subsequent section, the method is also extended for multi-tier supplier selection. In short, we are presenting a method for the design of a resilient supply chain, in this paper.
Resumo:
The twin demands of energy-efficiency and higher performance on DRAM are highly emphasized in multicore architectures. A variety of schemes have been proposed to address either the latency or the energy consumption of DRAMs. These schemes typically require non-trivial hardware changes and end up improving latency at the cost of energy or vice-versa. One specific DRAM performance problem in multicores is that interleaved accesses from different cores can potentially degrade row-buffer locality. In this paper, based on the temporal and spatial locality characteristics of memory accesses, we propose a reorganization of the existing single large row-buffer in a DRAM bank into multiple sub-row buffers (MSRB). This re-organization not only improves row hit rates, and hence the average memory latency, but also brings down the energy consumed by the DRAM. The first major contribution of this work is proposing such a reorganization without requiring any significant changes to the existing widely accepted DRAM specifications. Our proposed reorganization improves weighted speedup by 35.8%, 14.5% and 21.6% in quad, eight and sixteen core workloads along with a 42%, 28% and 31% reduction in DRAM energy. The proposed MSRB organization enables opportunities for the management of multiple row-buffers at the memory controller level. As the memory controller is aware of the behaviour of individual cores it allows us to implement coordinated buffer allocation schemes for different cores that take into account program behaviour. We demonstrate two such schemes, namely Fairness Oriented Allocation and Performance Oriented Allocation, which show the flexibility that memory controllers can now exploit in our MSRB organization to improve overall performance and/or fairness. Further, the MSRB organization enables additional opportunities for DRAM intra-bank parallelism and selective early precharging of the LRU row-buffer to further improve memory access latencies. These two optimizations together provide an additional 5.9% performance improvement.
Resumo:
In this paper, we report drain-extended MOS device design guidelines for the RF power amplifier (RF PA) applications. A complete RF PA circuit in a 28-nm CMOS technology node with the matching and biasing network is used as a test vehicle to validate the RF performance improvement by a systematic device design. A complete RF PA with 0.16-W/mm power density is reported experimentally. By simultaneous improvement of device-circuit performance, 45% improvement in the circuit RF power gain, 25% improvement in the power-added efficiency at 1-GHz frequency, and 5x improvement in the electrostatic discharge robustness are reported experimentally.