903 resultados para Pattern d’autoprotection
Resumo:
The aim of this study was to evaluate the ex vivo oestrogen responsiveness of human proliferative phase endometrium using short-term explant cultures. The effects of oestrogen (17beta-E2) on proliferation and the expression of oestrogen-responsive genes known to be involved in regulating endometrial function were evaluated. Three distinct response patterns could be distinguished: (1) the menstrual (M) phase pattern (cycle days 2-5), which is characterised by a complete lack in the proliferative response to 17beta-E2, while an increased expression of AR (2.6-fold, P<0.01), PR (2.7-fold, P<0.01) and COX-2 (3.5-fold, P<0.01) at the mRNA level was observed and a similar upregulation was also found for AR, PR and COX-2 at the protein level; (2) the early proliferative (EP) phase pattern (cycle days 6-10) with 17beta-E2 enhanced proliferation in the stroma (1.7-fold, P<0.05), whereas the expression of AR, PR and COX-2 were not affected at the mRNA and protein levels and ER-a mRNA and protein levels were significantly reduced by 17beta-E2; (3) the late proliferative (LP) phase pattern (cycle days 11-14), which is characterised by a moderate stimulation of proliferation (1.4-fold, P<0.05) and PR mRNA expression (1.7-fold, P<0.01) by 17beta-E2. In conclusion, three distinct response patterns to 17beta-E2 could be identified with respect to proliferation and the expression of known oestrogen-responsive genes in human proliferative phase endometrium explant cultures.
Resumo:
This study was designed to examine differences in the coupling dynamics between upper limb motion, physiological tremor and whole body postural sway in young healthy adults. Acceleration of the hand and fingers, forearm EMG activity and postural sway data were recorded. Estimation of the degree of bilateral and limb motion-postural sway coupling was determined by cross correlation, coherence and Cross-ApEn analyses. The results of the analysis revealed that, under postural tremor conditions, there was no significant coupling between limbs, muscles or sway across all metrics of coupling. In contrast, performing a rapid alternating flexion/extension movement about the wrist joint (with one or both limbs) resulted in stronger coupling between limb motion and postural sway. These results support the view that, for physiological tremor responses, the control of postural sway is maintained independent to tremor in the upper limb. However, increasing the level of movement about a distal segment of one arm (or both) leads to increased coupling throughout the body. The basis for this increased coupling would appear to be related to the enhanced neural drive to task-specific muscles within the upper limb.
Resumo:
Cerebellar dysfunction has been proposed to lead to “cognitive dysmetria” in schizophrenia via the cortico-cerebellar-thalamic-cortical circuit, contributing to a range of cognitive and clinical symptoms of the disorder. Here we investigated total cerebellar grey and white matter volumes and cerebellar regional grey matter abnormalities in 13 remitted first-episode schizophrenia patients with less than 2 years’ duration of illness. Patient data were compared to 13 pair-wise age, gender, and handedness-matched healthy volunteers using cortical pattern averaging on high-resolution magnetic resonance images. Total cerebellar volume and total grey matter volumes in first-episode schizophrenia patients did not differ from healthy control subjects, but total cerebellar white matter was increased and total grey to white matter ratios were reduced in patients. Four clusters of cerebellar grey matter reduction were identified: (i) in superior vermis; (ii) in the left lobuli VI; (iii) in right-inferior lobule IX, extending into left lobule IX; and (iv) bilaterally in the areas of lobuli III, peduncle and left flocculus. Grey matter deficits were particularly prominent in right lobuli III and IX, left flocculus and bilateral pedunculi. These cerebellar areas have been implicated in attention control, emotional regulation, social functioning, initiation of smooth pursuit eye movements, eye-blink conditioning, language processing, verbal memory, executive function and the processing of spatial and emotional information. Consistent with common clinical, cognitive, and pathophysiological signs of established illness, our findings demonstrate cerebellar pathology as early as in first-episode schizophrenia.
Resumo:
Extant models of decision making in social neurobiological systems have typically explained task dynamics as characterized by transitions between two attractors. In this paper, we model a three-attractor task exemplified in a team sport context. The model showed that an attacker–defender dyadic system can be described by the angle x between a vector connecting the participants and the try line. This variable was proposed as an order parameter of the system and could be dynamically expressed by integrating a potential function. Empirical evidence has revealed that this kind of system has three stable attractors, with a potential function of the form V(x)=−k1x+k2ax2/2−bx4/4+x6/6, where k1 and k2 are two control parameters. Random fluctuations were also observed in system behavior, modeled as white noise εt, leading to the motion equation dx/dt = −dV/dx+Q0.5εt, where Q is the noise variance. The model successfully mirrored the behavioral dynamics of agents in a social neurobiological system, exemplified by interactions of players in a team sport.
Resumo:
Due to its three-dimensional folding pattern, the human neocortex; poses a challenge for accurate co-registration of grouped functional; brain imaging data. The present study addressed this problem by; employing three-dimensional continuum-mechanical image-warping; techniques to derive average anatomical representations for coregistration; of functional magnetic resonance brain imaging data; obtained from 10 male first-episode schizophrenia patients and 10 age-matched; male healthy volunteers while they performed a version of the; Tower of London task. This novel technique produced an equivalent; representation of blood oxygenation level dependent (BOLD) response; across hemispheres, cortical regions, and groups, respectively, when; compared to intensity average co-registration, using a deformable; Brodmann area atlas as anatomical reference. Somewhat closer; association of Brodmann area boundaries with primary visual and; auditory areas was evident using the gyral pattern average model.; Statistically-thresholded BOLD cluster data confirmed predominantly; bilateral prefrontal and parietal, right frontal and dorsolateral; prefrontal, and left occipital activation in healthy subjects, while; patients’ hemispheric dominance pattern was diminished or reversed,; particularly decreasing cortical BOLD response with increasing task; difficulty in the right superior temporal gyrus. Reduced regional gray; matter thickness correlated with reduced left-hemispheric prefrontal/; frontal and bilateral parietal BOLD activation in patients. This is the; first study demonstrating that reduction of regional gray matter in; first-episode schizophrenia patients is associated with impaired brain; function when performing the Tower of London task, and supports; previous findings of impaired executive attention and working memory; in schizophrenia.
Resumo:
For traditional information filtering (IF) models, it is often assumed that the documents in one collection are only related to one topic. However, in reality users’ interests can be diverse and the documents in the collection often involve multiple topics. Topic modelling was proposed to generate statistical models to represent multiple topics in a collection of documents, but in a topic model, topics are represented by distributions over words which are limited to distinctively represent the semantics of topics. Patterns are always thought to be more discriminative than single terms and are able to reveal the inner relations between words. This paper proposes a novel information filtering model, Significant matched Pattern-based Topic Model (SPBTM). The SPBTM represents user information needs in terms of multiple topics and each topic is represented by patterns. More importantly, the patterns are organized into groups based on their statistical and taxonomic features, from which the more representative patterns, called Significant Matched Patterns, can be identified and used to estimate the document relevance. Experiments on benchmark data sets demonstrate that the SPBTM significantly outperforms the state-of-the-art models.
Resumo:
Smart Card Automated Fare Collection (AFC) data has been extensively exploited to understand passenger behavior, passenger segment, trip purpose and improve transit planning through spatial travel pattern analysis. The literature has been evolving from simple to more sophisticated methods such as from aggregated to individual travel pattern analysis, and from stop-to-stop to flexible stop aggregation. However, the issue of high computing complexity has limited these methods in practical applications. This paper proposes a new algorithm named Weighted Stop Density Based Scanning Algorithm with Noise (WS-DBSCAN) based on the classical Density Based Scanning Algorithm with Noise (DBSCAN) algorithm to detect and update the daily changes in travel pattern. WS-DBSCAN converts the classical quadratic computation complexity DBSCAN to a problem of sub-quadratic complexity. The numerical experiment using the real AFC data in South East Queensland, Australia shows that the algorithm costs only 0.45% in computation time compared to the classical DBSCAN, but provides the same clustering results.
Resumo:
This thesis targets on a challenging issue that is to enhance users' experience over massive and overloaded web information. The novel pattern-based topic model proposed in this thesis can generate high-quality multi-topic user interest models technically by incorporating statistical topic modelling and pattern mining. We have successfully applied the pattern-based topic model to both fields of information filtering and information retrieval. The success of the proposed model in finding the most relevant information to users mainly comes from its precisely semantic representations to represent documents and also accurate classification of the topics at both document level and collection level.
Spatiotemporal pattern of bacillary dysentery in China from 1990 to 2009: What is the driver behind?
Resumo:
BACKGROUND Little is known about the spatiotemporal pattern of bacillary dysentery (BD) in China. This study assessed the geographic distribution and seasonality of BD in China over the past two decades. METHODS Data on monthly BD cases in 31 provinces of China from January 1990 to December 2009 obtained from Chinese Center for Disease Control and Prevention, and data on demographic and geographic factors, as well as climatic factors, were compiled. The spatial distributions of BD in the four periods across different provinces were mapped, and heat maps were created to present the seasonality of BD by geography. A cosinor function combined with Poisson regression was used to quantify the seasonal parameters of BD, and a regression analysis was conducted to identify the potential drivers of morbidity and seasonality of BD. RESULTS Although most regions of China have experienced considerable declines in BD morbidity over the past two decades, Beijing and Ningxia still had high BD morbidity in 2009. BD morbidity decreased more slowly in North-west China than other regions. BD in China mainly peaked from July to September, with heterogeneity in peak time between regions. Relative humidity was associated with BD morbidity and peak time, and latitude was the major predictor of BD amplitude. CONCLUSIONS The transmission of BD was heterogeneous in China. Improved sanitation and hygiene in North-west China, and better access to clean water and food in the big floating population in some metropolises could be the focus of future preventive interventions against BD. BD control efforts should put more emphasis on those dry areas in summer.
Resumo:
Objective This study explores the spatiotemporal variations of suicide across Australia from 1986 to 2005, discusses the reasons for dynamic changes, and considers future suicide research and prevention strategies. Design Suicide (1986–2005) and population data were obtained from the Australian Bureau of Statistics. A series of analyses were conducted to examine the suicide pattern by sex, method and age group over time and geography. Results Differences in suicide rates across sex, age groups and suicide methods were found across geographical areas. Male suicides were mainly completed by hanging, firearms, gases and self-poisoning. Female suicides were primarily completed by hanging and self-poisoning. Suicide rates were higher in rural areas than in urban areas (capital cities and regional centres). Suicide rates by firearms were higher in rural areas than in urban areas, while the pattern for self-poisoning showed the reverse trend. Suicide rates had relatively stable trend for the total population and those aged between 15 and 54, while suicide decreased among 55 years and over during the study period. There was a decrease in suicides by firearms during the study period especially after 1996 when a new firearm control law was implemented, while suicide by hanging continued to increase. Areas with a high proportion of indigenous population (eg, northwest of Queensland and top north of the Northern Territory) had shown a substantial increase in suicide incidence after 1995. Conclusions Suicide rates varied over time and space and across sexes, age groups and suicide methods. This study provides detailed patterns of suicide to inform suicide control and prevention strategies for specific subgroups and areas of high and increased risk.
Resumo:
Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.
Resumo:
The mode of action of xylanase and beta-glucosidase purified from the culture filtrate of Humicola lanuginosa (Griffon and Maublanc) Bunce on the xylan extracted from sugarcane bagasse and on two commercially available larchwood and oat spelt xylans, on xylooligomers and on arabinoxylooligomers was studied. While larchwood and oat spelt xylans were hydrolyzed to the same extent in 24 h, sugarcane bagasse xylan was hydrolyzed to a lesser extent in the same period. It was found that the rate of hydrolysis of xylooligomers by xylanase increased with increase in chain length, while beta-glucosidase acted rather slowly on all the oligomers tested. Xylanase exhibited predominant ''endo'' action on xylooligomers attacking the xylan chain at random while beta-glucosidase had ''exo'' action, releasing one xylose residue at a time. On arabinoxylooligomers, however, xylanase exhibited ''exo'' action. Thus, it appears that the presence of the arabinose substituent has, in some way, rendered the terminal xylose-xylose linkage more susceptible to xylanase action. It was also observed that even after extensive hydrolysis with both the enzymes, substantial amounts of the parent arabinoxylooligomer remained unhydrolyzed together with the accumulation of arabinoxylobiose. It can therefore be concluded that the presence of the arabinose substituent in the xylan chain results in linkages that offer resistance to both xylanase and beta-glucosidase action.