959 resultados para Palhada de cana-de-açúcar
Resumo:
Unidade 4
Resumo:
Ilustração. Dimensão: 1324x1494. Tamanho: 118Kb.
Resumo:
Ilustração. Dimensão: 1657x1482. Tamanho: 276Kb.
Resumo:
Curso de Tecnologia Sucroalcooleira. Disciplina Tecnologia de Produção de Açúcar. Fluxograma. Dimensão: 1442x504. Tamanho: 954Kb.
Resumo:
Curso de Tecnologia Sucroalcooleira. Disciplina de Tecnologia de Produção de Açúcar. Ilustração. Dimensão: 1423x807. Tamanho: 114Kb.
Resumo:
Curso de Tecnologia Sucroalcooleira. Disciplina de Tecnologia de Produção de Açúcar. Ilustração. Dimensão: 1510x395. Tamanho: 57Kb.
Resumo:
Ilustração. Dimensão: 2553x1070. Tamanho: 236Kb.
Resumo:
Curso de Tecnologia Sucroalcooleira. Disciplina de Tecnologia de Produção de Açúcar. Ilustração. Dimensão: 6759x3378. Tamanho: 1.217 Kb.
Resumo:
Curso de Tecnologia Sucroalcooleira. Disciplina de Tecnologia de Produção de Açúcar. Ilustração. Dimensão: 4027x2989. Tamanho: 650Kb.
Resumo:
Curso de Tecnologia Sucroalcooleira. Disciplina de Tecnologia de Produção de Açúcar. Fluxograma. Dimensão: 1351x810. Tamanho: 1.064Kb.
Resumo:
Curso de Tecnologia Sucroalcooleira. Disciplina de Tecnologia de Produção de Açúcar. Ilustração. Dimensão: 1831x807. Tamanho: 131Kb.
Resumo:
PEDRO, Edilson da Silva. Estratégias para a organização da pesquisa em cana-de-açúcar: uma análise de governança em sistemas de inovação. 2008. 226f. Tese (Doutorado em Política Científica e Tecnológica) - Universidade Estadual de Campinas, Campinas, 2008.
Resumo:
In this work, we used sugarcane as a model due to its importance for sugar and ethanol production. Unlike the current plant models, sugarcane presents a complex genetics and an enormous allelic variation. Here, we report the analysis of SAGE libraries produced using the shoot apical meristem from contrasted genotypes by flowering induction (non-flowering vs. early-flowering varieties) grown under São Paulo state conditions. The expression pattern was analyzed using samples from São Paulo (SP) and Rio Grande do Norte (RN) states. These results showed that cDNAs identified by SAGE libraries had differential expression only in São Paulo state samples. Furthermore, the cDNA identified CYP (Citocrome P450) was chosen for in silico and genome characterization because it was found in SAGE libraries and subtractive libraries from samples from RN. Phylogenetic trees showed the relationship for these sequences. Furthermore, the qRT-PCR for CYP showed a potential role as flowering indutor for RN samples considering different isophorms. Considering the results present here, it can be consider that CYP gene may be used as molecular marker
Resumo:
Sugarcane (Saccharum spp.) is a plant from Poaceae family that has an impressive ability to accumulate sucrose in the stalk, making it a significant component of the economy of many countries. About 100 countries produce sugarcane in an area of 22 million hectares worldwide. For this reason, many studies have been done using sugarcane as a plant model in order to improve production. A change in gravity may be one kind of abiotic stress, since it generates rapid responses after stimulation. In this work we decided to investigate the possible morphophysiological, biochemical and molecular changes resulting from microgravity. Here, we present the contributions of an experiment where sugarcane plants were submitted to microgravity flight using a vehicle VSB-30, a sounding rocket developed by Aeronautics and Space Institute teams, in cooperation with the German Space Agency. Sugarcane plants with 10 days older were submitted to a period of six minutes of microgravity using the VSB-30 rocket. The morphophysiological analyses of roots and leaves showed that plants submitted to the flight showed changes in the conduction tissues, irregular pattern of arrangement of vascular bundles and thickening of the cell walls, among other anatomical changes that indicate that the morphology of the plants was substantially influenced by gravitational stimulation, besides the accumulation of hydrogen peroxide, an important signaling molecule in stress conditions. We carried out RNA extraction and sequencing using Illumina platform. Plants subjected to microgravity also showed changes in enzyme activity. It was observed an increased in superoxide dismutase activity in leaves and a decreased in its activity in roots as well as for ascorbate peroxidase activity. Thus, it was concluded that the changes in gravity were perceived by plants, and that microgravity environment triggered changes associated with a reactive oxygen specie signaling process. This work has helped the understanding of how the gravity affects the structural organization of the plants, by comparing the anatomy of plants subjected to microgravity and plants grown in 1g gravity
Resumo:
The genome of all organisms constantly suffers the influence of mutagenic factors from endogenous and/or exogenous origin, which may result in damage for the genome. In order to keep the genome integrity there are different DNA repair pathway to detect and correct these lesions. In relation to the plants as being sessile organisms, they are exposed to this damage frequently. The Base Excision DNA Repair (BER) is responsible to detect and repair oxidative lesions. Previous work in sugarcane identified two sequences that were homologous to Arabidopsis thaliana: ScARP1 ScARP3. These two sequences were homologous to AP endonuclease from BER pathway. Then, the aim of this work was to characterize these two sequence using different approaches: phylogenetic analysis, in silico protein organelle localization and by Nicotiana tabacum transgenic plants with overexpression cassette. The in silico data obtained showed a duplication of this sequence in sugarcane and Poaceae probably by a WGD event. Furthermore, in silico analysis showed a new localization in nuclei for ScARP1 protein. The data obtained with transgenic plants showed a change in development and morphology. Transgenic plants had slow development when compared to plants not transformed. Then, these results allowed us to understand better the potential role of this sequence in sugarcane and in plants in general. More work is important to be done in order to confirm the protein localization and protein characterization for ScARP1 and ScARP3