983 resultados para PSI
Resumo:
We present measurements of the J/psi invariant yields in root s(NN) = 39 and 62.4 GeV Au + Au collisions at forward rapidity (1.2 < vertical bar y vertical bar < 2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au + Au collisions (R-CP) and for various centrality selections in Au + Au relative to scaled p + p cross sections obtained from other measurements (R-AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement. DOI: 10.1103/PhysRevC.86.064901
Resumo:
The ALICE experiment has measured the inclusive J/psi production in Pb-Pb collisions at root s(NN) = 2.76 TeV down to zero transverse momentum in the rapidity range 2.5 < y < 4. A suppression of the inclusive J/psi yield in Pb-Pb is observed with respect to the one measured in pp collisions scaled by the number of binary nucleon-nucleon collisions. The nuclear modification factor, integrated over the 0%-80% most central collisions, is 0.545 +/- 0.032(stat) +/- 0.083dsyst_ and does not exhibit a significant dependence on the collision centrality. These features appear significantly different from measurements at lower collision energies. Models including J/psi production from charm quarks in a deconfined partonic phase can describe our data.
Resumo:
The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at root s = 7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L-int = 5.6 nb(-1). The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p(t) > 1,3 GeV/c and rapidity vertical bar y vertical bar < 0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the psi(2S) and chi(c) resonances, is sigma(prompt J/psi) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 8.3 +/- 0.8(stat.) +/- 1.1 (syst.)(-1.4)(+1.5) (syst. pol.) mu b. The cross section for the production of b-hadrons decaying to J/psi with p(t) > 1.3 GeV/c and vertical bar y vertical bar < 0.9 is a sigma(J/psi <- hB) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 1.46 +/- 0.38 (stat.)(-0.32)(+0.26) (syst.) mu b. The results are compared to QCD model predictions. The shape of the p(t) and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b (b) over bar pair total cross section and d sigma/dy at mid-rapidity.
Resumo:
The ALICE Collaboration reports the measurement of the relative J/psi yield as a function of charged particle pseudorapidity density dN(ch)/d eta in pp collisions at root s = 7 TeV at the LHC. J/psi particles are detected for p(t) > 0, in the rapidity interval vertical bar y vertical bar < 0.9 via decay into e(+)e(-), and in the interval 2.5 < y < 4.0 via decay into mu(+)/mu(-) pairs. An approximately linear increase of the J/psi yields normalized to their event average (dN(J/psi)/dy)/(dN(J/psi)/dy) with (dN(ch)/c eta)/(dN(ch)/d eta) is observed in both rapidity ranges, where dN(ch)/d eta is measured within vertical bar eta vertical bar < 1 and p(t) > 0. In the highest multiplicity interval with (dN(ch)/d eta)(bin)) = 24.1, corresponding to four times the minimum bias multiplicity density, an enhancement relative to the minimum bias J/psi yield by a factor of about 5 at 2.5 < y <4 (8 at vertical bar y vertical bar < 0.9) is observed. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.
Resumo:
The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.
Resumo:
The present thesis is a contribution to the theory of algebras of pseudodifferential operators on singular settings. In particular, we focus on the $b$-calculus and the calculus on conformally compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral invariant transmission operator algebras. We summarize results given by Gramsch et. al. on the construction of $Psi_0$-and $Psi*$-algebras and the corresponding scales of generalized Sobolev spaces using commutators of certain closed operators and derivations. In the case of a manifold with corners $Z$ we construct a $Psi*$-completion $A_b(Z,{}^bOmega^{1/2})$ of the algebra of zero order $b$-pseudodifferential operators $Psi_{b,cl}(Z, {}^bOmega^{1/2})$ in the corresponding $C*$-closure $B(Z,{}^bOmega^{12})hookrightarrow L(L^2(Z,{}^bOmega^{1/2}))$. The construction will also provide that localised to the (smooth) interior of Z the operators in the $A_b(Z, {}^bOmega^{1/2})$ can be represented as ordinary pseudodifferential operators. In connection with the notion of solvable $C*$-algebras - introduced by Dynin - we calculate the length of the $C*$-closure of $Psi_{b,cl}^0(F,{}^bOmega^{1/2},R^{E(F)})$ in $B(F,{}^bOmega^{1/2}),R^{E(F)})$ by localizing $B(Z, {}^bOmega^{1/2})$ along the boundary face $F$ using the (extended) indical familiy $I^B_{FZ}$. Moreover, we discuss how one can localise a certain solving ideal chain of $B(Z, {}^bOmega^{1/2})$ in neighbourhoods $U_p$ of arbitrary points $pin Z$. This localisation process will recover the singular structure of $U_p$; further, the induced length function $l_p$ is shown to be upper semi-continuous. We give construction methods for $Psi*$- and $C*$-algebras admitting only infinite long solving ideal chains. These algebras will first be realized as unconnected direct sums of (solvable) $C*$-algebras and then refined such that the resulting algebras have arcwise connected spaces of one dimensional representations. In addition, we recall the notion of transmission algebras on manifolds with corners $(Z_i)_{iin N}$ following an idea of Ali Mehmeti, Gramsch et. al. Thereby, we connect the underlying $C^infty$-function spaces using point evaluations in the smooth parts of the $Z_i$ and use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it is possible to associate generalized (solving) ideal chains to these algebras, such that to every $ninN$ there exists an ideal chain of length $n$ within the algebra. Finally, we discuss the $K$-theory for algebras of pseudodifferential operators on conformally compact manifolds $X$ and give an index theorem for these operators. In addition, we prove that the Dirac-operator associated to the metric of a conformally compact manifold $X$ is not a Fredholm operator.
Resumo:
In questo lavoro di tesi è stato studiato lo spettro di massa invariante del sistema J/psi pi+ pi-, m(J/psi pi+ pi-), in collisioni protone-protone a LHC, con energia nel centro di massa sqrt(s)) pari a 8 TeV, alla ricerca di nuovi stati adronici. Lo studio è stato effettuato su un campione di dati raccolti da CMS in tutto il 2012, corrispondente ad una luminosità integrata di 18.6 fb-1. Lo spettro di massa invariante m(J/psi pi+ pi-), è stato ricostruito selezionando gli eventi J/psi->mu+ mu- associati a due tracce cariche di segno opposto, assunte essere pioni, provenienti da uno stesso vertice di interazione. Nonostante l'alta statistica a disposizione e l'ampia regione di massa invariante tra 3.6 e 6.0 GeV/c^2 osservata, sono state individuate solo risonanze già note: la risonanza psi(2S) del charmonio, lo stato X(3872) ed una struttura più complessa nella regione attorno a 5 GeV/c^2, che è caratteristica della massa dei mesoni contenenti il quark beauty (mesoni B). Al fine di identificare la natura di tale struttura, è stato necessario ottenere un campione di eventi arricchito in adroni B. È stata effettuata una selezione basata sull'elevata lunghezza di decadimento, che riflette la caratteristica degli adroni B di avere una vita media relativamente lunga (ordine dei picosecondi) rispetto ad altri adroni. Dal campione così ripulito, è stato possibile distinguere tre sottostrutture nello spettro di massa invariante in esame: una a 5.36 GeV/c^2, identificata come i decadimenti B^0_s-> J/psi pi+ pi-, un'altra a 5.28 GeV/c^2 come i candidati B^0-> J/psi pi+ pi- e un'ultima allargata tra 5.1 e 5.2 GeV/c^2 data da effetti di riflessione degli scambi tra pioni e kaoni. Quest'ultima struttura è stata identificata come totalmente costituita di una combinazione di eventi B^0-> J/psi K+ pi- e B^0_s-> J/psi K+ K-.
Resumo:
Diese Arbeit beschreibt die Entwicklung, Konstruktion und Untersuchung eines Magnetometers zur exakten und präzisen Messung schwacher Magnetfelder. Diese Art von Magnetometer eignet sich zur Anwendung in physikalischen hochpräzisions Experimenten wie zum Beispiel der Suche nach dem elektrischen Dipolmomentrndes Neutrons. Die Messmethode beruht auf der gleichzeitigen Detektion der freien Spin Präzession Kern-Spin polarisierten 3He Gases durch mehrere optisch gepumpte Cäsium Magnetometer. Es wird gezeigt, dass Cäsium Magnetometer eine zuverlässige und vielseitige Methode zur Messung der 3He Larmor Frequenz und eine komfortable Alternative zur Benutzung von SQUIDs für diesen Zweck darstellen. Ein Prototyp dieses Magnetometers wurde gebaut und seine Funktion in der magnetisch abgeschirmten Messkabine der Physikalisch Technischen Bundesanstalt untersucht. Die Sensitivität des Magnetometers in Abhängigkeitrnvon der Messdauer wurde experimentell untersucht. Es wird gezeigt, dass für kurze Messperioden (< 500s) Cramér-Rao limitierte Messungen möglich sind während die Sensitivität bei längeren Messungen durch die Stabilität des angelegten Magnetfeldes limitiert ist. Messungen eines 1 muT Magnetfeldes mit einer relative Genauigkeit von besser als 5x10^(-8) in 100s werden präsentiert. Es wird gezeigt, dass die Messgenauigkeit des Magnetometers durch die Zahl der zur Detektion der 3He Spin Präzession eingesetzten Cäsium Magnetometer skaliert werden kann. Prinzipiell ist dadurch eine Anpassung der Messgenauigkeit an jegliche experimentellen Bedürfnisse möglich. Es wird eine gradiometrische Messmethode vorgestellt, die es erlaubt den Einfluss periodischerrnmagnetischer Störungen auf dieMessung zu unterdrücken. Der Zusammenhang zwischen der Sensitivität des kombinierten Magnetometers und den Betriebsparametern der Cäsium Magnetometer die zur Spin Detektion verwendet werden wird theoretisch untersucht und anwendungsspezifische Vor- und Nachteile verschiedener Betriebsartenwerden diskutiert. Diese Zusammenhänge werden in einer Formel zusammengefasst die es erlaubt, die erwartete Sensitivität des Magnetometers zu berechnen. Diese Vorhersagen befinden sich in perfekter Übereinstimmung mit den experimentellen Daten. Die intrinsische Sensitivität des Magnetometer Prototyps wird auf Basis dieser Formel theoretisch bestimmt. Ausserdem wird die erwartete Sensitivität für die Anwendung im Rahmen des Experiments der nächsten Generation zur Bestimmung des elektrischenrnDipolmoments des Neutrons am Paul Scherrer Institut abgeschätzt. Des weiteren wird eine bequeme experimentelle Methode zur Messung des Polarisationsgrades und des Rabi Flip-Winkels der 3He Kernspin Polarisation vorgestellt. Letztere Messung ist sehr wichtig für die Anwendung in hochpräzisions Experimenten.