989 resultados para PRECURSOR CELLS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rheumatoid arthritis is the most common of all types of arthritis and despite of intensive research etiology of the disease remains unclear. Distinctive features of rheumatic arthritis comprise continuous inflammation of synovium, in which synovial membrane expands on cartilage leading to pannus tissue formation. Pannus formation, appearance of proteolytic enzymes and osteoclast formation cause articular cartilage and bone destruction, which lead to erosions and permanent joint damage. Proteolytic pathways play major roles in the development of tissue lesions in rheumatoid arthritis. Degradation of extracellular matrix proteins is essential to pannus formation and invasion. Matrix metalloproteinases (MMP) form a large proteolytic enzyme family and in rheumatoid arthritis they contribute to pannus invasion by degrading extracellular matrix and to joint destruction by directly degrading the cartilage. MMP-1 and MMP-3 are shown to be increased during cell invasion and also involved in cartilage destruction. Increase of many cytokines has been observed in rheumatoid arthritis, especially TNF-α and IL-1β are studied in synovial tissue and are involved in rheumatoid inflammation and degradation of cartilage. Underlying bone resorption requires first demineralization of bone matrix with acid secreted by osteoclasts, which exposes the collagen-rich matrix for degradation. Cathepsin K is the best known enzyme involved in bone matrix degradation, however deficiency of this protein in pycnodysostosis patient did not prevent bone erosion and on the contrary pannus tissue invading to bone did not expressed much cathepsin K. These indicate that other proteinases are involved in bone degradation, perhaps also via their capability to replace the role of other enzymes especially in diseases like pycnodysostosis or during medication e.g. using cathepsin K inhibitors. Multinuclear osteoclasts are formed also in pannus tissue, which enable the invasion into underlying bone matrix. Pannus tissue express a receptor activator of nuclear factor kappa B ligand (RANKL), an essential factor for osteoclast differentiation and a disintegrin and a metalloproteinase 8 (ADAM8), an osteoclast-activating factors, involved in formation of osteoclast-like giant cells by promoting fusion of mononuclear precursor cells. The understanding of pannus invasion and degradation of extracellular matrix in rheumatic arthritis will open us new more specific methods to prevent this destructive joint disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Germ cell tumors occur both in the gonads of both sexes and in extra-gonadal sites during adoles-cence and early adulthood. Malignant ovarian germ cell tumors are rare neoplasms accounting for less than 5% of all cases of ovarian malignancy. In contrast, testicular cancer is the most common malignancy among young males. Most of patients survive the disease. Prognostic factors of gonadal germ cell tumors include histology, clinical stage, size of the primary tumor and residua, and levels of tumor markers. Germ cell tumors include heterogeneous histological subgroups. The most common subgroup includes germinomas (ovarian dysgerminoma and testicular seminoma); other subgroups are yolk sac tumors, embryonal carcinomas, immature teratomas and mixed tumors. The origin of germ cell tumors is most likely primordial germ cells. Factors behind germ cell tumor development and differentiation are still poorly known. The purpose of this study was to define novel diagnostic and prognostic factors for malignant gonadal germ cell tumors. In addition, the aim was to shed further light into the molecular mechanisms regulating gonadal germ cell tumorigenesis and differentiation by studying the roles of GATA transcription factors, pluripotent factors Oct-3/4 and AP-2γ, and estrogen receptors. This study revealed the prognostic value of CA-125 in malignant ovarian germ cell tumors. In addition advanced age and residual tumor had more adverse outcome. Several novel markers for histological diagnosis were defined. In the fetal development transcription factor GATA-4 was expressed in early fetal gonocytes and in testicular carcinoma precursor cells. In addition, GATA-4 was expressed in both gonadal germinomas, thus it may play a role in the development and differentiation of the germinoma tumor subtype. Pluripotent factors Oct-3/4 and AP-2γ were expressed in dysgerminomas, thus they could be used in the differential diagnosis of the germ cell tumors. Malignant ovarian germ cell tumors expressed estrogen receptors and their co-regulator SNURF. In addition, estrogen receptor expression was up-regulated by estradiol stimulation. Thus, gonadal steroid hormone burst in puberty may play a role in germ cell tumor development in the ovary. This study shed further light in to the molecular pathology of malignant gonadal germ cell tumors. In addition, some novel diagnostic and prognostic factors were defined. This data may be used in the differential diagnosis of germ cell tumor patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

生物学图式及其形成规律一直是生命科学特别是发育生物学的重要课题;同时也是组织工程中实现体外组织构建的核心科学问题之一。长期以来,对生物图式形成的模型研究的根本不足之处是以数理方法为基础的动力学模型研究和生物学背景的结合不够。因此,本文试图遵循生物图式本身的形成过程,寻求一条与生物学相适配的途径,即以哺乳动物组织发育/活组织工程化构建为目标,以细胞行为为基点,以力学一化学藕合作用为介导,以元胞自动机方法为基础,建立生物学图式形成的一个细胞一环境整体离散模型。应用这一整体离散模型,在不同的控制参数下,对盘基网柄菌的聚集图式和杆菌的生长图式进行了系统的分析,对血管发生(vasculogenesis)的自组装图式进行了初步的新的探索,得到了与实验研究定性上一致的结果。提出了“诱导开关”概念,对盘基网柄菌(Dictyostelium discoideu),杆菌(Bacillus)和血管内皮祖细胞(Endothelial Precursor cells,EPC)三种模式生物,分别以cAMP的信号波前,营养微粒,VEGF的浓度梯度等为诱导开关量。在对盘基网柄菌细胞接收到cAMP后分泌和定向迁移形成的聚集图式的模拟中,系统地考察了影响聚集图式的各种控制参数;一个重要的结果表明细胞初始响应间期对形成的聚集模式有十分显著的影响;引入聚集速度、回转半径、盒质量分布系数等概念对盘基网柄菌的聚集图式进行了一些定量描述的探索。在对杆菌因代谢、增殖、凋亡/衰亡而形成的生长图式的模拟中,系统地定量地分析了在初始营养浓度、营养/代谢物扩散快慢、代谢抑制三者藕合作用下的生长图式;引入定向流动边界,考察了杆菌向营养入口方向的优势生长。在对血管内皮祖细胞经vEGF分子浓度梯度场的诱导进行定向迁移,分化为血管内皮细胞,并自组装形成网状的原初毛细血管丛的模拟中,建立了一个微血管发生自组装图式的新的离散模型,为以后加入力与内皮细胞的相互作用以及血管再生等构建了一个前期模型框架;初步考察了细胞的浓度,细胞分泌vEGF分子的周期,vEGF分子的扩散时间尺度等对血管发生图式的影响因素。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of the vulva of the nematode Caenorhabditis elegans is induced by a signal from the anchor cell of the somatic gonad. Activity of the gene lin-3 is required for the Vulval Precursor Cells (VPCs) to assume vulval fates. It is shown here that lin-3 encodes the vulval-inducing signal.

lin-3 was molecularly cloned by transposon-tagging and shown to encode a nematode member ofthe Epidermal Growth Factor (EGF) family. Genetic epistasis experiments indicate that lin-3 acts upstream of let-23, which encodes a homologue of the EGF-Receptor.

lin-3 transgenes that contain multiple copies of wild-type lin-3 genomic DNA clones confer a dominant multivulva phenotype in which up to all six of the VPCs assume vulval fates. The properties of these trans genes suggest that lin-3 can act in the anchor cell to induce vulval fates. Ablation of the gonadal precursors, which prevents the development of the AC, strongly reduces the ability of lin-3 transgenes to stimulate vulval development. A lin-3 recorder transgene that retains the ability to stimulate vulval development is expressed specifically in the anchor cell at the time of vulval induction.

Expression of an obligate secreted form of the EGF domain of Lin-S from a heterologous promoter is sufficient to induce vulval fates in the absence of the normal source of the inductive signal. This result suggests that Lin-S may act as a secreted factor, and that Lin-S may be the sole vulval-inducing signal made by the anchor cell.

lin-3 transgenes can cause adjacent VPCs to assume the 1° vulval fate and thus can override the action of the lateral signal mediated by lin-12 that normally prevents adjacent 1° fates. This indicates that the production of Lin-3 by the anchor cell must be limited to allow the VPCs to assume the proper pattern of fates of so 3° 3° 2° 1° 2° 3°.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interpretation of extracellular cues leading to the polarization of intracellular components and asymmetric cell divisions is a fundamental part of metazoan organogenesis. The C. elegans vulva, with its invariant cell lineage and interaction of multiple cell signaling pathways, provides an excellent model for the study of cell polarity within an organized epithelial tissue. Herein I discuss the interaction of Wnt and FGF signaling in controlling vulval cell lineage polarity with emphasis on the posterior-most cell that forms the vulva, P7.p.

The mirror symmetry of the C. elegans vulva is achieved by the opposite division orientation of the vulval precursor cells (VPCs) flanking the axis of symmetry. Opposing Wnt signals control the division patterns of the VPCs by controlling the localization of SYS-1/ β-catenin toward the direction of the Wnt gradient. Multiple Wnt signals, expressed at the axis of symmetry, promote the wild-type, anterior-facing, P7.p orientation, whereas Wnts EGL-20 and CWN-1 from the tail and posterior body wall muscle, respectively, promote the daughter cells of P7.p to face the posterior. EGL-20 acts through a member of the LDL receptor superfamily, LRP-2, along with Ror/CAM-1 and Van Gogh/VANG-1. All three transmembrane proteins control orientation through the localization of the SYS-1.

The Fibroblast Growth Factor (FGF) pathway acts in concert with LIN-17/Frizzled to regulate the localization of SYS-1. The source of the FGF ligand is the 1° VPC, P6.p, which controls the polarity of the neighboring 2° VPC, P7.p, by signaling through the sex myoblasts (SMs), activating the FGF pathway. The Wnt, cwn-1, is expressed in the posterior body wall muscle of the worm as well as the SMs, making it the only Wnt expressed on the posterior and anterior sides of P7.p at the time of the polarity decision. Both sources of cwn-1 act instructively to influence P7.p polarity in the direction of the Wnt gradient. The FGF pathway leads to the regulation of cwn-1 transcripts in the SMs. These results illustrate the first evidence of the interaction between FGF and Wnt in C. elegans development and vulval cell lineage polarity as well as highlight the promiscuous nature of Wnt signaling within C. elegans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sea urchin embryonic skeleton, or spicule, is deposited by mesenchymal progeny of four precursor cells, the micromeres, which are determined to the skeletogenic pathway by a process known as cytoplasmic localization. A gene encoding one of the major products of the skeletogenic mesenchyme, a prominent 50 kD protein of the spicule matrix, has been characterized in detail. cDNA clones were first isolated by antibody screening of a phage expression library, followed by isolation of homologous genomic clones. The gene, known as SM50, is single copy in the sea urchin genome, is divided into two exons of 213 and 1682 bp, and is expressed only in skeletogenic cells. Transcripts are first detectable at the 120 cell stage, shortly after the segregation of the skeletogenic precursors from the rest of the embryo. The SM50 open reading frame begins within the first exon, is 450 amino acids in length, and contains a loosely repeated 13 amino acid motif rich in acidic residues which accounts for 45% of the protein and which is possibly involved in interaction with the mineral phase of the spicule.

The important cis-acting regions of the SM50 gene necessary for proper regulation of expression were identified by gene transfer experiments. A 562 bp promoter fragment, containing 438 bp of 5' promoter sequence and 124 bp of the SM50 first exon (including the SM50 initiation codon), was both necessary and sufficient to direct high levels of expression of the bacterial chloramphenicol acetyltransferase (CAT) reporter gene specifically in the skeletogenic cells. Removal of promoter sequences between positions -2200 and -438, and of transcribed regions downstream of +124 (including the SM50 intron), had no effect on the spatial or transcriptional activity of the transgenes.

Regulatory proteins that interact with the SM50 promoter were identified by the gel retardation assay, using bulk embryo mesenchyme blastula stage nuclear proteins. Five protein binding sites were identified and mapped to various degrees of resolution. Two sites are homologous, may be enhancer elements, and at least one is required for expression. Two additional sites are also present in the promoter of the aboral ectoderm specific cytoskeletal actin gene CyIIIa; one of these is a CCAA T element, the other a putative repressor element. The fifth site overlaps the binding site of the putative repressor and may function as a positive regulator by interfering with binding of the repressor. All of the proteins are detectable in nuclear extracts prepared from 64 cell stage embryos, a stage just before expression of SM50 is initiated, as well as from blastula and gastrula stage; the putative enhancer binding protein may be maternal as well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The compound eye of Drosophila melanogaster begins to differentiate during the late third larval instar in the eye-antennal imaginal disc. A wave of morphogenesis crosses the disc from posterior to anterior, leaving behind precisely patterned clusters of photoreceptor cells and accessory cells that will constitute the adult ommatidia of the retina. By the analysis of genetically mosaic eyes, it appears that any cell in the eye disc can adopt the characteristics of any one of the different cell types found in the mature eye, including photoreceptor cells and non-neuronal accessory cells such as cone cells. Therefore, cells within the prospective retinal epithelium assume different fates presumably via information present in the environment. The sevenless^+ (sev^+) gene appears to play a role in the expression of one of the possible fates, since the mutant phenotype is the lack of one of the pattern elements, namely, photoreceptor cell R7. The sev^+ gene product had been shown to be required during development of the eye, and had also been shown in genetic mosaics to be autonomous to presumptive R7. As a means of better understanding the pathway instructing the differentiation R7, the gene and its protein product were characterized.

The sev+ gene was cloned by P-element transposon tagging, and was found to encode an 8.2 kb transcript expressed in developing eye discs and adult heads. By raising monoclonal antibodies (MAbs) against a sev^+- β-galactosidase fusion protein, the expression of the protein in the eye disc was localized by immuno-electronmicroscopy. The protein localizes to the apical cell membranes and microvilli of cells in the eye disc epithelium. It appears during development at a time coincident with the initial formation of clusters, and in all the developing photoreceptors and accessory cone cells at a time prior to the overt differentiation of R7. This result is consistent with the pluripotency of cells in the eye disc. Its localization in the membranes suggests that it may receive information directing the development of R7. Its localization in the apical membranes and microvilli is away from the bulk of the cell contacts, which have been cited as a likely regions for information presentation and processing. Biochemical characterization of the sev^+ protein will be necessary to describe further its role in development.

Other mutations in Drosophila have eye phenotypes. These were analyzed to find which ones affected the initial patterning of cells in the eye disc, in order to identify other genes, like sev, whose gene products may be involved in generating the pattern. The adult eye phenotypes ranged from severe reduction of the eye, to variable numbers of photoreceptor cells per ommatidium, to sub de defects in the organization of the supporting cells. Developing eye discs from the different strains were screened using a panel of MAbs, which highlight various developmental stages. Two identified matrix elements in and anterior to the furrow, while others identified the developing ommatidia themselves, like the anti-sev MAb. Mutation phenotypes were shown to appear at many stages of development. Some mutations seem to affect the precursor cells, others, the setting up of the pattern, and still others, the maintenance of the pattern. Thus, additional genes have now been identified that may function to support the development of a complex pattern.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pattern formation during animal development involves at least three processes: establishment of the competence of precursor cells to respond to intercellular signals, formation of a pattern of different cell fates adopted by precursor cells, and execution of the cell fate by generating a pattern of distinct descendants from precursor cells. I have analyzed the fundamental mechanisms of pattern formation by studying the development of Caenorhabditis elegans vulva.

In C. elegans, six multipotential vulval precursor cells (VPCs) are competent to respond to an inductive signal LIN-3 (EGF) mediated by LET- 23 (RTK) and a lateral signal via LIN-12 (Notch) to form a fixed pattern of 3°-3°-2°-1°-2°-3°. Results from expressing LIN-3 as a function of time in animals lacking endogenous LIN-3 indicate that both VPCs and VPC daughters are competent to respond to LIN-3. Although the daughters of VPCs specified to be 2° or 3° can be redirected to adopt the 1°fate, the decision to adopt the 1° fate is irreversible. Coupling of VPC competence to cell cycle progression reveals that VPC competence may be periodic during each cell cycle and involve LIN-39 (HOM-C). These mechanisms are essential to ensure a bias towards the 1° fate, while preventing an excessive response.

After adopting the 1° fate, the VPC executes its fate by dividing three rounds to form a fixed pattern of four inner vulF and four outer vulE descendants. These two types of descendants can be distinguished by a molecular marker zmp-1::GFP. A short-range signal from the anchor cell (AC), along with signaling between the inner and outer 1° VPC descendants and intrinsic polarity of 1° VPC daughters, patterns the 1° lineage. The Ras and the Wnt signaling pathways may be involved in these mechanisms.

The temporal expression pattern of egl-17::GFP, another marker ofthe 1° fate, correlates with three different steps of 1° fate execution: the commitment to the 1° fate, as well as later steps before and after establishment of the uterine-vulval connection. Six transcription factors, including LIN-1(ETS), LIN-39 (HOM-C), LIN-11(LIM), LIN-29 (zinc finger), COG-1 (homeobox) and EGL-38 (PAX2/5/8), are involved in different steps during 1° fate execution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by the loss of midbrain dopaminergic neurons from the substantia nigra pars compacta(SNpc), which results in motor, cognitive and psychiatric symptoms. Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Inflammation may also be associated with the neuropathology of PD due to evidence of increased levels of proinflammatory cytokines such as interleukin-1β (IL-1β) within the SNpc. Because of the specific loss of dopaminergic neurons in a discreet region of the brain, PD is considered a suitable candidate for cell replacement therapy but challenges remain to optimise dopaminergic cell survival and morphological development. The present thesis examined the role of MKP-1 in neurotoxic and inflammatory-induced changes in the development of midbrain dopaminergic neurons. We show that MKP-1 is expressed in dopaminergic neurons cultured from embryonic day (E) 14 rat ventral mesencephalon (VM). Inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6- hydroxydopamine (6-OHDA) is mediated by p38, and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. Dopaminergic neurons transfected to overexpress MKP-1 displayed a more complex morphology and contributed to neuroprotection against the effects of 6-OHDA. Therefore, MKP-1 expression can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Neural precursor cells (NPCs) have emerged as promising alternative candidates to fetal VM for cell replacement strategies in PD. Here we show that phosphorylated (and thus activated) p38 and MKP-1 are expressed at basal levels in untreated E14 rat VM NPCs (nestin, DCX, GFAP and DAT-positive cells) following proliferation as well as in their differentiated progeny (DCX, DAT, GFAP and βIII-tubulin) in vitro. Challenge with 6-OHDA or IL-1β changed the expression of endogenous phospho-p38 and MKP-1 in these cells in a time-dependent manner, and so the dynamic balance in expression may mediate the detrimental effects of neurotoxicity and inflammation in proliferating and differentiating NPCs. We demonstrate that there was an up-regulation in MKP-1 mRNA expression in adult rat midbrain tissue 4 days post lesion in two rat models of PD; the 6-OHDA medial forebrain bundle (MFB) model and the four-site 6-OHDA striatal lesion model. This was concomitant with a decrease in tyrosine hydroxylase (TH) mRNA expression at 4 and 10 days post-lesion in the MFB model and 10 and 28 days post-lesion in the striatal lesion model. There was no change in mRNA expression of the pro-apoptotic gene, bax and the anti-apoptotic gene, bcl-2 in the midbrain and striatum. These data suggest that the early and transient upregulation of MKP-1 mRNA in the midbrain at 4 days post-6-OHDA administration may be indicative of an attempt by dopaminergic neurons in the midbrain to protect against the neurotoxic effects of 6-OHDA at later time points. Collectively, these findings show that MKP-1 is expressed by developing and adult dopaminergic neurons in the midbrain, and can promote their morphological development. MKP-1 also exerts neuroprotective effects against dopaminergic neurotoxins in vitro, and its expression in dopaminergic neurons can be modulated by inflammatory and neurotoxic insults both in vitro and in vivo. Thus, these data contribute to the information needed to develop therapeutic strategies for protecting midbrain dopaminergic neurons in the context of PD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ) proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attractive target for small molecule intervention. We describe a humanized yeast-based high-throughput screen to identify small molecule activators of human HSF1. This screen is insensitive to previously characterized activators of the heat shock response that have undesirable proteotoxic activity or that inhibit Hsp90, the central chaperone for cellular signaling and proliferation. A molecule identified in this screen, HSF1A, is structurally distinct from other characterized small molecule human HSF1 activators, activates HSF1 in mammalian and fly cells, elevates protein chaperone expression, ameliorates protein misfolding and cell death in polyQ-expressing neuronal precursor cells and protects against cytotoxicity in a fly model of polyQ-mediated neurodegeneration. In addition, we show that HSF1A interacts with components of the TRiC/CCT complex, suggesting a potentially novel regulatory role for this complex in modulating HSF1 activity. These studies describe a novel approach for the identification of new classes of pharmacological interventions for protein misfolding that underlies devastating neurodegenerative disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Idiopathic erythrocytosis (IE) is characterized by erythrocytosis in the absence of megakaryocytic or granulocytic hyperplasia, and is associated with variable serum erythropoietin (Epo) levels. Most patients with IE lack the JAK2 V617F mutation that occurs in the majority of polycythemia vera patients. Four novel JAK2 mutant alleles have recently been described in patients with V617F-negative myeloproliferative disorders presenting with erythrocytosis. The aims of this study were to assess the prevalence of JAK2 exon 12 mutations in IE patients, and to determine the associated clinicopathological features.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hemopoietic progenitor cells express clustered homeobox (Hox) genes in a pattern characteristic of their lineage and stage of differentiation. In general, HOX expression tends to be higher in more primitive and lower in lineage-committed cells. These trends have led to the hypothesis that self-renewal of hemopoietic stem/progenitor cells is HOX-dependent and that dysregulated HOX expression underlies maintenance of the leukemia-initiating cell. Gene expression profile studies support this hypothesis and specifically highlight the importance of the HOXA cluster in hemopoiesis and leukemogenesis. Within this cluster HOXA6 and HOXA9 are highly expressed in patients with acute myeloid leukemia and form part of the "Hox code" identified in murine models of this disease. We have examined endogenous expression of Hoxa6 and Hoxa9 in purified primary progenitors as well as four growth factor-dependent cell lines FDCP-Mix, EML, 32Dcl3, and Ba/F3, representative of early multipotential and later committed precursor cells respectively. Hoxa6 was consistently higher expressed than Hoxa9, preferentially expressed in primitive cells and was both growth-factor and cell-cycle regulated. Enforced overexpression of HOXA6 or HOXA9 in FDCP-Mix resulted in increased proliferation and colony formation but had negligible effect on differentiation. In both FDCP-Mix and the more committed Ba/F3 precursor cells overexpression of HOXA6 potentiated factor-independent proliferation. These findings demonstrate that Hoxa6 is directly involved in fundamental processes of hemopoietic progenitor cell development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here, we show for the first time, that the familial breast/ovarian cancer susceptibility gene BRCA1 activates the Notch pathway in breast cells by transcriptional upregulation of Notch ligands and receptors in both normal and cancer cells. We demonstrate through chromatin immunoprecipitation assays that BRCA1 is localized to a conserved intronic enhancer region within the Notch ligand Jagged-1 (JAG1) gene, an event requiring ΔNp63. We propose that this BRCA1/ΔNp63-mediated induction of JAG1 may be important the regulation of breast stem/precursor cells, as knockdown of all three proteins resulted in increased tumoursphere growth and increased activity of stem cell markers such as Aldehyde Dehydrogenase 1 (ALDH1). Knockdown of Notch1 and JAG1 phenocopied BRCA1 knockdown resulting in the loss of Estrogen Receptor-α (ER-α) expression and other luminal markers. A Notch mimetic peptide could activate an ER-α promoter reporter in a BRCA1-dependent manner, whereas Notch inhibition using a γ-secretase inhibitor reversed this process. We demonstrate that inhibition of Notch signalling resulted in decreased sensitivity to the anti-estrogen drug Tamoxifen but increased expression of markers associated with basal-like breast cancer. Together, these findings suggest that BRCA1 transcriptional upregulation of Notch signalling is a key event in the normal differentiation process in breast tissue.