989 resultados para POLYMER BLEND


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blends of poly(2-vinyl pyridine)-block-poly(methyl methacrylate) (P2VP-b-PMMA) and poly(hydroxyether of bisphenol A) (phenoxy) were prepared by solvent casting from chloroform solution. The specific interactions, phase behavior and nanostructure morphologies of these blends were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this block copolymer/homopolymer blend system, it is established that competitive hydrogen bonding exists as both blocks of the P2VP-b-PMMA are capable of forming intermolecular hydrogen bonds with phenoxy. It was observed that the interaction between phenoxy and P2VP is stronger than that between phenoxy and PMMA. This imbalance in the intermolecular interactions and the repulsions between the two blocks of the diblock copolymer lead to a variety of phase morphologies. At low phenoxy concentration, spherical micelles are observed. As the concentration increases, PMMA begins to interact with phenoxy, leading to the changes of morphology from spherical to wormlike micelles and finally forms a homogenous system. A model is proposed to describe the self-assembled nanostructures of the P2VP-b-PMMA/phenoxy blends, and the competitive hydrogen bonding is responsible for the morphological changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies indicate that a variation in the degree of crystallinity of the components of a polymer blend influences the mechanical properties. This variation can be obtained by subjecting the blend to heat treatments that lead to changes in the spherulitic structure. The aim of this work is to analyze the influence of different heat treatments on the variation of the degree of crystallinity and to establish a relationship between this variation and the mechanical behavior of poly(methyl methacrylate)/poly(ethylene terephthalate) recycled (PMMA / PETrec) with and without the use of compatibilizer agent poly(methyl methacrylate-al-glycidyl methacrylate-al-ethyl acrylate) (MMAGMA- EA). All compositions were subjected to two heat treatments. T1 heat treatment the samples were treated at 130 ° C for 30 minutes and cooled in air. In T2, the samples were treated at 230 ° C for 5 minutes and cooled to approximately -10 ° C. The variation of the degree of crystallinity was determined by the proportional relationship between crystallinity and density, with the density measured by pycnometry. The mechanical behavior was verified by tensile tests with and without the presence of notches and pre-cracks, and by method of fracture toughness in plane strain (KIC). We used the scanning electron microscopy (SEM) to analyze the fracture surface of the samples. The compositions subjected to heat treatment T1, in general, showed an increase in the degree of crystallinity in tensile strength and a tendency to decrease in toughness, while compositions undergoing treatment T2 showed that the opposite behavior. Therefore, this work showed that heat treatment can give a polymer blend further diversity of its properties, this being caused by changes in the crystal structure

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of new materials to fill the demand of technological advances is a challenge for many researchers around the world. Strategies such as making blends and composites are promising alternatives to produce materials with different properties from those found in conventional polymers. The objective of this study is to evaluate the effect of adding the copolymer poly(ethylene methyl acrylate) (EMA) and cotton linter fibers (LB) on the properties of recycled poly(ethylene terephthalate) (PETrec) by the development of PETrec/EMA blend and PETrec/EMA/LB blend composite. In order to improve the properties of these materials were added as compatibilizers: Ethylene - methyl acrylate - glycidyl methacrylate terpolymer (EMA-GMA) and maleic anhydride grafted polyethylene (PE-g-MA). The samples were produced using a single screw extruder and then injection molded. The obtained materials were characterized by thermogravimetry (TG), melt flow index (MFI) mensurements, torque rheometry, pycnometry to determinate the density, tensile testing and scanning electron microscopy (SEM). The rheological results showed that the addition of the EMA copolymer increased the viscosity of the blend and LB reduces the viscosity of the blend composite. SEM analysis of the binary blend showed poor interfacial adhesion between the PETrec matrix and the EMA dispersed phase, as well as the blend composite of PETrec/EMA/LB also observed low adhesion with the LB fiber. The tensile tests showed that the increase of EMA percentage decreased the tensile strength and the Young s modulus, also lower EMA percentage samples had increased the elongation at break. The blend composite showed an increase in the tensile strength and in the Young`s modulus, and a decrease in the elongation at break. The blend formulations with lower EMA percentages showed better mechanical properties that agree with the particle size analysis which showed that these formulations presented a smaller diameter of the dispersed phase. The blend composite mechanical tests showed that this material is stronger and stiffer than the blend PETrec/EMA, whose properties have been reduced due to the presence of EMA rubbery phase. The use of EMA-GMA was effective in reducing the particle size of the EMA dispersed phase in the PETrec/EMA blend and PE-g-MA showed evidences of reaction with LB and physical mixture with the EMA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrically conductive poly(vinylidene fluoride)(PVDF) - polyaniline blends of different composition were synthesized by chemical polymerization of aniline in a mixture of PVDF and dimethylformamide (DMF) and studied by electrical conductivity measurement, UV-Vis-NIR and FTIR spectroscopy. The samples were obtained as flexible films by pressing the powder at 180 degrees C for 5 min. The electrical conductivity showed a great dependence on the syntheses parameters. The higher value of the electrical conductivity was obtained for the oxidant/aniline molar ratio equal to 1 and p-toluenesulfonic acid-TSA/aniline ratio between 3 and 6. UV-Vis-NIR and FTIR spectra of the blend are similar to the doped PANI, indicating that the PANI is responsible for the high electrical conductivity of the blend. The electrical conductivity of blend proved to be stable as a function of temperature decreasing about one order at temperature of 100 degrees C. The route used to obtain the polymer blend showed to be a suitable alternative in order to obtain PVDF/PANI-TSA blends with high electrical conductivity. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the microscopic origin of the dielectric properties of disordered materials has been a challenge for many years, especially in the case of samples with more than one phase. For polar dielectrics, for instance, the Lepienski approach has indicated that the random free energy barrier model of Dyre must be extended. Here we analyse the dielectric properties of a polymer blend made up with the semiconducting poly(o-methoxyaniline) and poly( vinylidene fluoride-trifluorethylene) POMA/P(VDF-TrFE), and of a hybrid composite of POMA/P(VDF-TrFE)/Zn2SiO4:Mn. For the blend, the Lepienski model, which takes into account the rotation or stretching of electric dipoles, provided excellent fitting to the ac impedance data. Because two phases had to be assumed for the hybrid composite, we had to extend the Lepienski model to fit the data, by incorporating a second transport mechanism. The two mechanisms were associated with the electronic transport in the polymeric matrix and with transport at the interfaces between Zn2SiO4: Mn microparticles and the polymeric matrix, with the relative importance of the interfacial component increasing with the percentage of Zn2SiO4: Mn in the composite. The analysis of impedance data at various temperatures led to a prediction of the theoretical model of a change in morphology at 190 +/- 40 K, and this was confirmed experimentally with a differential scanning calorimetry experiment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ductile-brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile-butadiene-styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate-co-maleic anhydride (MMA-MAH) and MMA-co-glycidyl methacrylate (MMA-GMA). The ductile-brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA-MAH compatibilizer were supertough and showed a ductile-brittle transition temperature at -10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA-GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The materials designed to be used in electroluminescent (EL) devices construction are studied and improved since 1936. Great interests in the development of this kind of devices are mainly due to its low power consumption, flexibility, low cost and easy processing. One class of ELs devices with these characteristics are produced by employing a organic-polymeric/inorganic composite from a conductive polymer blend and an inorganic electroluminescent material (Zn2SiO4:Mn) dispersed in the polymeric matrix. This kind of device operates in d.c. or a.c. potentials, with EL of hundreds candela in the green region of the visible spectrum. However, few studies on the light emission were performed for these devices. In order to characterize devices made from composites, in this work is proposed a method of characterizing the electroluminescence associated with the impedance spectroscopy technique. To implement the technique of impedance spectroscopy was employ an experimental setup consisting of a source of a.c. voltage, an oscilloscope, and a reference resistor. Associated with this system, was use a photo diode and an analog electrometer to characterize the emitted light signal from the sample. The system was implemented allows characterization by impedance spectroscopy in the frequency range from 0.2 Hz up to 2 MHz and voltage amplitudes of 5 mV up to 20 kV. This system permits, at the same time, measurement of the RMS value of the luminance for devices in frequency range from 20 Hz up to 2 MHz. To test the system efficiency, an EL device was characterized showing analogous results to those reported in literature. By doing this, was demonstrated the efficiency of the system for electroluminescence characterization associated with the electrical characterization by impedance spectroscopy, for devices

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite the great development of organic and polymeric electroluminescent materials, the large scale commercial application of devices made with these materials seems conditioned to specific cases, mainly due to the high cost and the low durability, in compared to conventional technologies. In this study was produced electroluminescent devices by a process simple, drop casting. Were produced electroluminescent films containing Zn2SiO4:Mn immersed in a conductive polymer blend with different thicknesses. The morphological characteristics of these films were studied by scanning electronic microscopy. These films were used in the manufacture of electroluminescent devices, in which the light emission properties of the developed material were evaluated. The blend was composed of the conductive polymer Poly(o-methoxyaniline), doped with p-toluene sulfonic acid, and an insulating polymer, Poly(vinylidene fluoride) and its copolymer Poly(vinylidene fluoride-cotrifluoroethylene). To this blend was added Zn2SiO4:Mn, thereby forming the composite. A first set of devices was obtained using composites with different weight fraction of polymeric and inorganic phases, which were deposited by drop casting over ITO substrates. Upper electrodes of aluminum were deposited by thermal evaporation. The resulting device architecture was a sandwich type structure ITO/ composite/ Al. A second set of devices was obtained as self-sustaining films using the best composite composition obtained for the device of the first set. ITO electrodes were deposited by RF-Sputtering, in both faces of these films. The AC electrical characterization of the devices was made with impedance spectroscopy measurements, and the DC electrical characterization was performed using a source/ meter unit Keithley 2410. The devices light emission was measured using a photodiode coupled to a digital electrometer, Keithley 6517A. The devices electrooptical characterization showed that the...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dünne Polymerfilme besitzen einen weiten Anwendungsbereich in vielen High-Tech Applikationen. All diese Anwendungen erfordern ein bestimmtes Anwendungsprofil des dünnen Films. Diese Anforderungen umschließen sowohl die physikalischen Eigenschaften des Films als auch seine Struktur. Um sie zu realisieren, werden oftmals Mischungsfilme aus verschiedenen Polymeren verwendet. Diese neigen jedoch in vielen Fällen zur bereits während der Präparation zu Phasenseparation.Vor diesem Hintergrund wurde untersucht welchen Einfluss die Verträglichkeit der gemischten Polymere auf die Strukturbildung des dünnen Films ausüben. Als Modellsystem hierfür dienten Mischungen statistischer Poly-styrol-stat-para brom-styrol Copolymere.Die Oberflächenstrukturen, die sich währen der Präparation der Mischungsfilme einstellten, wurden mit Rasterkraftmikroskopie untersucht. wobei die Topologie einer statistischen Analyse unterzogen wurde. Zum einen wurde hierzu die spektrale Leistungsdichte der Oberflächenkontour zum anderen die zugehörigen Minkowski-Funktionale berechnet.Neben Oberflächenstrukturen bilden sich während der Präparation auch Entmischungsstrukturen im inneren des Filmes. Zur Charakterisierung dieser Strukturen wurden die Filme durch Streuung unter streifendem Einfall untersucht. Durch eine modellfreie Interpretation der Streuexperimente gelang der Nachweis der inneren StrukturenFür nur schwach unverträglich Filme konnte auf Basis der Streuexperimente eine Replikation der Oberflächenstruktur des Substrates auf die Filmoberflächen nachgewiesen werden. Diese Replikation wurde für verschieden raue Substrate und bezueglich der Kinetik ihrer Abnahme beim Quellen der Filme untersucht.