903 resultados para PHYLOGENETIC SIGNAL
Resumo:
This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30 degrees C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8 h. The reactor R1 operating with a HRT of 2 h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2) mol(-1) glucose with 1.3 mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Void fraction sensors are important instruments not only for monitoring two-phase flow, but for furnishing an important parameter for obtaining flow map pattern and two-phase flow heat transfer coefficient as well. This work presents the experimental results obtained with the analysis of two axially spaced multiple-electrode impedance sensors tested in an upward air-water two-phase flow in a vertical tube for void fraction measurements. An electronic circuit was developed for signal generation and post-treatment of each sensor signal. By phase shifting the electrodes supplying the signal, it was possible to establish a rotating electric field sweeping across the test section. The fundamental principle of using a multiple-electrode configuration is based on reducing signal sensitivity to the non-uniform cross-section void fraction distribution problem. Static calibration curves were obtained for both sensors, and dynamic signal analyses for bubbly, slug, and turbulent churn flows were carried out. Flow parameters such as Taylor bubble velocity and length were obtained by using cross-correlation techniques. As an application of the void fraction tested, vertical flow pattern identification could be established by using the probability density function technique for void fractions ranging from 0% to nearly 70%.
Resumo:
Real-time viscosity measurement remains a necessity for highly automated industry. To resolve this problem, many studies have been carried out using an ultrasonic shear wave reflectance method. This method is based on the determination of the complex reflection coefficient`s magnitude and phase at the solid-liquid interface. Although magnitude is a stable quantity and its measurement is relatively simple and precise, phase measurement is a difficult task because of strong temperature dependence. A simplified method that uses only the magnitude of the reflection coefficient and that is valid under the Newtonian regimen has been proposed by some authors, but the obtained viscosity values do not match conventional viscometry measurements. In this work, a mode conversion measurement cell was used to measure glycerin viscosity as a function of temperature (15 to 25 degrees C) and corn syrup-water mixtures as a function of concentration (70 to 100 wt% of corn syrup). Tests were carried out at 1 MHz. A novel signal processing technique that calculates the reflection coefficient magnitude in a frequency band, instead of a single frequency, was studied. The effects of the bandwidth on magnitude and viscosity were analyzed and the results were compared with the values predicted by the Newtonian liquid model. The frequency band technique improved the magnitude results. The obtained viscosity values came close to those measured by the rotational viscometer with percentage errors up to 14%, whereas errors up to 96% were found for the single frequency method.
Resumo:
This paper presents the results of the in-depth study of the Barkhausen effect signal properties for the plastically deformed Fe-2%Si samples. The investigated samples have been deformed by cold rolling up to plastic strain epsilon(p) = 8%. The first approach consisted of time-domain-resolved pulse and frequency analysis of the Barkhausen noise signals whereas the complementary study consisted of the time-resolved pulse count analysis as well as a total pulse count. The latter included determination of time distribution of pulses for different threshold voltage levels as well as the total pulse count as a function of both the amplitude and the duration time of the pulses. The obtained results suggest that the observed increase in the Barkhausen noise signal intensity as a function of deformation level is mainly due to the increase in the number of bigger pulses.
Resumo:
Yellow leaf syndrome was a serious problem in the beginning of the 1990s in Brazil, when yield losses were estimated to be around 50%. The disease is currently endemic, but it is considered potentially important. Previous studies have revealed only the presence of a luteovirus associated with the disease in Brazil. We report that a phytoplasma of 16SrI-B is also associated with this disease. This is the first demonstration of the presence of a group 16SrI-B phytoplasma in association with sugarcane yellow leaf in Brazil.
Resumo:
Several aspects of photoperception and light signal transduction have been elucidated by studies with model plants. However, the information available for economically important crops, such as Fabaceae species, is scarce. In order to incorporate the existing genomic tools into a strategy to advance soybean research, we have investigated publicly available expressed sequence tag ( EST) sequence databases in order to identify Glycine max sequences related to genes involved in light-regulated developmental control in model plants. Approximately 38,000 sequences from open-access databases were investigated, and all bona fide and putative photoreceptor gene families were found in soybean sequence databases. We have identified G. max orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses, although some important Arabidopsis phytochrome-signaling components are absent. Moreover, soybean and Arabidopsis gene-family homologs appear to have undergone a distinct expansion process in some cases. We propose a working model of light perception, signal transduction and response-eliciting in G. max, based on the identified key components from Arabidopsis. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate several aspects of plant physiology and metabolism.
Resumo:
Rapid alkalinization factor (RALF) is part of a growing family of small peptides with hormone characteristics in plants. Initially isolated from leaves of tobacco plants, RALF peptides can be found throughout the plant kingdom and they are expressed ubiquitously in plants. We took advantage of the small gene family size of RALF genes in sugarcane and the ordered cellular growth of the grass sugarcane leaves to gain information about the function of RALF peptides in plants. Here we report the isolation of two RALF peptides from leaves of sugarcane plants using the alkalinization assay. SacRALF1 was the most abundant and, when added to culture media, inhibited growth of microcalli derived from cell suspension cultures at concentrations as low as 0.1 mu M. Microcalli exposed to exogenous SacRALF1 for 5 days showed a reduced number of elongated cells. Only four copies of SacRALF genes were found in sugarcane plants. All four SacRALF genes are highly expressed in young and expanding leaves and show a low or undetectable level of expression in expanded leaves. In half-emerged leaf blades, SacRALF transcripts were found at high levels at the basal portion of the leaf and at low levels at the apical portion. Gene expression analyzes localize SacRALF genes in elongation zones of roots and leaves. Mature leaves, which are devoid of expanding cells, do not show considerable expression of SacRALF genes. Our findings are consistent with SacRALF genes playing a role in plant development potentially regulating tissue expansion.
Resumo:
Ethylene signal transduction initiates with ethylene binding at receptor proteins and terminates in a transcription cascade involving the EIN3/EIL transcription factors. Here, we have isolated four cDNAs homologs of the Arabidopsis EIN3/EIN3-like gene, MA-EILs (Musa acuminata ethylene insensitive 3-like) from banana fruit. Sequence comparison with other banana EIL gene already registered in the database led us to conclude that, at this day, at least five different genes namely MA-EIL1, MA-EIL2/AB266318, MA-EIL3/AB266319, MA-EIL4/AB266320 and AB266321 exist in banana. Phylogenetic analyses included all banana EIL genes within a same cluster consisting of rice OsEILs, a monocotyledonous plant as banana. However, MA-EIL1, MA-EIL2/AB266318, MA-EIL4/AB266320 and AB266321 on one side, and MA-EIL3/AB266319 on the other side, belong to two distant subclusters. MA-EIL mRNAs were detected in all examined banana tissues but at lower level in peel than in pulp. According to tissues, MA-EIL genes were differentially regulated by ripening and ethylene in mature green fruit and wounding in old and young leaves. MA-EIL2/AB266318 was the unique ripening- and ethylene-induced gene; MA-EIL1, MA-EIL4/Ab266320 and AB266321 genes were downregulated, while MA-EIL3/AB266319 presented an unusual pattern of expression. Interestingly, a marked change was observed mainly in MA-EIL1 and MA-EIL3/Ab266319 mRNA accumulation concomitantly with changes in ethylene responsiveness of fruit. Upon wounding, the main effect was observed in MA-EIL4/AB266320 and AB266321 mRNA levels, which presented a markedly increase in both young and old leaves, respectively. Data presented in this study suggest the importance of a transcriptionally step control in the regulation of EIL genes during banana fruit ripening.
Resumo:
This paper presents a new relative measure of signal complexity, referred to here as relative structural complexity, which is based on the matching pursuit (MP) decomposition. By relative, we refer to the fact that this new measure is highly dependent on the decomposition dictionary used by MP. The structural part of the definition points to the fact that this new measure is related to the structure, or composition, of the signal under analysis. After a formal definition, the proposed relative structural complexity measure is used in the analysis of newborn EEG. To do this, firstly, a time-frequency (TF) decomposition dictionary is specifically designed to compactly represent the newborn EEG seizure state using MP. We then show, through the analysis of synthetic and real newborn EEG data, that the relative structural complexity measure can indicate changes in EEG structure as it transitions between the two EEG states; namely seizure and background (non-seizure).
Resumo:
Bacterial endosymbionts of insects have long been implicated in the phenomenon of cytoplasmic incompatibility, in which certain crosses between symbiont-infected individuals lead to embryonic death or sex ratio distortion. The taxonomic position of these bacteria has, however, not been known with any certainty. Similarly, the relatedness of the bacteria infecting various insect hosts has been unclear. The inability to grow these bacteria on defined cell-free medium has been the major factor underlying these uncertainties. We circumvented this problem by selective PCR amplification and subsequent sequencing of the symbiont 16S rRNA genes directly from infected insect tissue. Maximum parsimony analysis of these sequences indicates that the symbionts belong in the α-subdivision of the Proteobacteria, where they are most closely related to the Rickettsia and their relatives. They are all closely related to each other and are assigned to the type species Wolbachia pipientis. Lack of congruence between the phylogeny of the symbionts and their insect hosts suggests that horizontal transfer of symbionts between insect species may occur. Comparison of the sequences for W. pipientis and for Wolbachia persica, an endosymbiont of ticks, shows that the genus Wolbachia is polyphyletic. A PCR assay based on 16S primers was designed for the detection of W. pipientis in insect tissue, and initial screening of insects indicates that cytoplasmic incompatibility may be a more general phenomenon in insects than is currently recognized.
Resumo:
The generalized Gibbs sampler (GGS) is a recently developed Markov chain Monte Carlo (MCMC) technique that enables Gibbs-like sampling of state spaces that lack a convenient representation in terms of a fixed coordinate system. This paper describes a new sampler, called the tree sampler, which uses the GGS to sample from a state space consisting of phylogenetic trees. The tree sampler is useful for a wide range of phylogenetic applications, including Bayesian, maximum likelihood, and maximum parsimony methods. A fast new algorithm to search for a maximum parsimony phylogeny is presented, using the tree sampler in the context of simulated annealing. The mathematics underlying the algorithm is explained and its time complexity is analyzed. The method is tested on two large data sets consisting of 123 sequences and 500 sequences, respectively. The new algorithm is shown to compare very favorably in terms of speed and accuracy to the program DNAPARS from the PHYLIP package.
Resumo:
The BR algorithm is a novel and efficient method to find all eigenvalues of upper Hessenberg matrices and has never been applied to eigenanalysis for power system small signal stability. This paper analyzes differences between the BR and the QR algorithms with performance comparison in terms of CPU time based on stopping criteria and storage requirement. The BR algorithm utilizes accelerating strategies to improve its performance when computing eigenvalues of narrowly banded, nearly tridiagonal upper Hessenberg matrices. These strategies significantly reduce the computation time at a reasonable level of precision. Compared with the QR algorithm, the BR algorithm requires fewer iteration steps and less storage space without depriving of appropriate precision in solving eigenvalue problems of large-scale power systems. Numerical examples demonstrate the efficiency of the BR algorithm in pursuing eigenanalysis tasks of 39-, 68-, 115-, 300-, and 600-bus systems. Experiment results suggest that the BR algorithm is a more efficient algorithm for large-scale power system small signal stability eigenanalysis.
Resumo:
Phylogenies of trematodes based on characters derived from morphology and life cycles have been controversial. Here, we add molecular data to the phylogenetic study of a group of trematodes, members of the superfamily Hemiuroidea Looss, 1899. DNA sequences from the V4 domain of the nuclear small subunit (18S) rRNA gene and a matrix of morphological characters modified from a previous study were used. There was no significant incongruence between the molecular and the morphological data. However, this was probably due largely to the limited resolving power of the morphological data. Analyses support a monophyletic Hemiuroidea containing at least the families Accacoeliidae, Derogenidae, Didymozoidae, Hirudinellidae, Sclerodistomidae, Syncoeliidae, Isoparorchiidae, Lecithasteridae, and Hemiuridae. These families fall into two principal clades. One contains the first six families and the other the Hemiuridae and lecithasterine lecithasterids. The positions of the hysterolecithine lecithasterids and the Isoparorchiidae were poorly resolved. The Ptychogonimidae may be the sister group of the remaining Hemiuroidea, but there was no support from the molecular data for the placement of the Azygiidae within the superfamily. (C) 1998 Academic Press.
Resumo:
Two new species of the genus Lepidapedoides are described from the aulopodid teleost Aulopus purpurissatus from south-western Australia. Both are distinguished from other Lepidapedoides spp. by their pedunculate ventral sucker. Lepidapedoides pistoris n. sp. and L. elongatrium n. sp. are distinguished by the possession of a narrow, elongate form, a long ventral sucker to ovary distance: the vitellarium reaching only to the posterior level of the cirrus-sac, the cirrus-sac length and the deep genital atrium with the metraterm entering distally to its base in L. elongatrium. A key to species of the genus is given. A character matrix is included for the genus. Poorly resolved phylogenetic trees indicate two main lineages in the genus. The two new species described here are resolved as sister taxa. The new combination Lepidapedoides freitasi (Kohn gr Fernandes, 1970) is formed for Acanthocolpoides freitasi.
Resumo:
Analysis of the 16S rDNA sequences of species currently assigned to the genus Herpetosiphon revealed intrageneric phylogenetic heterogeneity. The thermotolerant freshwater species Herpetosiphon geysericola is most closely related to the type species Herpetosiphon aurantiacus in the Chloroflexus Subdivision of the green non-sulfur bacteria, The marine species Herpetosiphon cohaerens, Herpetosiphon nigricans and Herpetosiphon persicus, on the other hand, were found to form a cluster with the sheathed bacterium Haliscomenobacter hydrossis in the Saprospira group of the Flexibacter-Bacteroides-Cytophaga (FBC) phylum. A proposal is made to transfer these marine species to the genus Lewinella gen. nov. as Lewinella cohaerens comb, nov., Lewinella nigricans comb. nov, and Lewinella persica comb. nov. The marine sheathed gliding bacterium Flexithrix dorotheae was also found to be a member of the FBC phylum but on a separate phylogenetic line to the marine herpetosiphons now assigned to the genus Lewinella.