972 resultados para PHOSPHOLIPASE-A2 ACTIVITY
Resumo:
INTRODUÇÃO: Em pacientes com síndromes isquêmicas miocárdicas instáveis (SIMI), tanto a hiperatividade simpática quanto a resposta inflamatória exacerbada se associam a pior prognóstico. No entanto, ainda é desconhecido se existe alguma correlação entre esses dois marcadores de evolução desfavorável. OBJETIVOS: Correlacionar a atividade nervosa simpática muscular com marcadores inflamatórios nas fases precoce e tardia de pacientes portadores de SIMI. MÉTODOS: Pacientes hospitalizados com diagnóstico de SIMI e evolução favorável foram incluídos de forma prospectiva desde que apresentassem idade entre 18 e 65 anos e aterosclerose coronária comprovada por cinecoronariografia. Logo após a inclusão no estudo foram coletadas informações basais, e no quarto dia (± 1 dia) de internação os pacientes foram submetidos à avaliação da ANSM e coleta concomitante de amostra sanguínea para dosagem de proteína CReativa ultrassensível (PCR-us), interleucina-6 (IL6), e fosfolipase A2 associada à lipoproteína (Lp-PLA2). ANSM foi obtida pela técnica de microneurografia do nervo fibular. As medidas e respectivas análises de correlação foram repetidas em 1, 3 e 6 meses após a hospitalização. Correlações entre ANSM e marcadores inflamatórios foram analisadas por meio do teste de Pearson (variáveis de distribuição não-paramétrica foram transformadas logaritmicamente). Modelos de regressão linear múltipla foram criados para avaliar os efeitos independentes. RESULTADOS: Foram estudados 34 pacientes com idade média de 51,7±7,0 anos, sendo 79,4% do sexo masculino. A prevalência de hipertensão arterial foi de 64,7%, diabetes mellitus 8,8%, e doença arterial coronária prévia de 20,6%. A apresentação foi IAM com supradesnível de ST em 18 pacientes (52,9%), IAM sem supra de ST em 14 (41,2%) e angina instável em 02 pacientes (5,9%). Tanto ANSM quanto biomarcadores inflamatórios estavam elevados durante a fase aguda das SIMI e diminuíram ao longo do tempo. Na fase hospitalar, a mediana da PCR-us foi 17,75 (8,57; 40,15) mg/L, e IL-6 6,65 (4,45; 8,20) pg/ml, a Lp- PLA2 média foi 185,8 ± 52,2 nmol/min/ml, e ANSM média 64,2 ± 19,3 impulsos/100bpm. Após 6 meses, houve diminuição significativa de todas essas variáveis quando comparadas com a fase hospitalar. Entretanto, não houve correlação significativa entre a atividade simpática e qualquer dos marcadores inflamatórios analisados, em nenhuma das fases analisadas (p > 0,05), Por outro lado, ANSM se correlacionou independentemente com níveis de CKMB na fase aguda (p=0,027), e com fração de ejeção do VE na fase crônica (p=0,026). CONCLUSÃO: Apesar do aumento inicial dos níveis de marcadores inflamatórios e da atividade simpática em pacientes com SIMI, não houve correlação significativa entre esses parâmetros em nenhuma das fases analisadas, sugerindo que as alterações dessas variáveis estariam relacionadas a diferentes vias fisiopatológicas
Resumo:
The Human Secreted Group IIA Phospholipase A(2) (hsPIA2GIIA) presents potent bactericidal activity, and is considered to contribute to the acute-phase immune response. Hydrolysis of inner membrane phospholipids is suggested to underlie the bactericidal activity, and we have evaluated this proposal by comparing catalytic activity with bactericidal and liposome membrane damaging effects of the G30S, H48Q and D49K h5PLA2GIIA mutants. All mutants showed severely impaired hydrolytic activities against mixed DOPC:DOPG liposome membranes, however the bactericidal effect against Micrococcus luteus was less affected, with 50% killing at concentrations of 1, 3, 7 and 9 mu g/mL for the wild-type, D49K, H48Q and G30S mutants respectively. Furthermore, all proteins showed Ca2+-independent damaging activity against Liposome membranes demonstrating that in addition to the hydrolysis-dependent membrane damage, the hsPLA2GIIA presents a mechanism for permeabilization of phospholipid bilayers that is independent of catalytic activity, which may play a role in the bactericidal function of the protein (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
'SequenceSpace' analysis is a novel approach which has been used to identify unique amino acids within a subfamily of phospholipases A2 (PLA2) in which the highly conserved active site residue Asp49 is substituted by Lys (Lys49-PLA2s). Although Lys49-PLA2s do not bind the catalytic co-factor Ca2+ and possess extremely low catalytic activity, they demonstrate a Ca2+-independent membrane damaging activity through a poorly understood mechanism, which does not involve lipid hydrolysis. Additionally, Lys49-PLA2s possess combined myotoxic, oedema forming and cardiotoxic pharmacological activities, however the structural basis of these varied functions is largely unknown. Using the 'SequenceSpace' analysis we have identified nine residues highly unique to the Lys49-PLA2 sub-family, which are grouped in three amino acid clusters in the active site, hydrophobic substrate binding channel and homodimer interface regions. These three highly specific residue clusters may have relevance for the Ca2+-independent membrane damaging activity. Of a further 15 less stringently conserved residues, nine are located in two additional clusters which are well isolated from the active site region. The less strictly conserved clusters have been used in predictive sequence searches to correlate amino acid patterns in other venom PLA2s with their pharmacological activities, and motifs for presynaptic and combined toxicities are proposed.
Resumo:
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A2 (PLA2s) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing Mr ∼ 14,000 for the monomer and 28,000 Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA2s from snake venoms, MTX-I belonging to Asp49 PLA2 class, enzymatically active, and MTX-II to Lys49 PLA2s, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA2 and anticoagulant activities, corroborating the importance of residue His48 and Ca2+ ions for the enzymatic catalysis. Both PLA2s induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA2 proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer. © 2008 Elsevier Inc. All rights reserved.
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
Sulfated polysaccharides derived from seaweed have shown great potential for use in the development of new drugs. In this study, we observed that a low-molecular-weight sulfated polysaccharide from Caulerpa racemosa, termed CrSP, could interact with secretory phospholipase A2 (sPLA2) isolated from Crotalus durissus terrificus venom. When native sPLA2 (14 kDa) was incubated with CrSP, they formed a molecular complex (sPLA2:CrSP) with a molecular mass of 32 kDa, approximately. Size exclusion chromatography experiments suggested that CrSP formed a stable complex with sPLA2. We belived that sPLA2 and SPCr are involved an ionic interaction between negatively charged CrSP and the positively charged basic amino acid residues of sPLA2, because this interaction induced significant changes in sPLA2 enzymatic and pharmacological activities. CrSP caused a significant increase in sPLA2 enzymatic and bactericidal activity and increased its edematogenic effect. A pharmacological assay showed that the myotoxic activity of sPLA2:CrSP is unrelated to its enzymatic activity and that sPLA2:CrSP may have a practical application as a natural antibacterial agent for use in humans and commercially raised animals.
Resumo:
Pós-graduação em Doenças Tropicais - FMB
Resumo:
Phospholipases A(2) (PLA(2)) are key enzymes in membrane metabolism. The release of fatty acids and lysophospholipids by PLA(2) activates several intra-cellular second messenger cascades that regulate a wide variety of physiological responses. The aim of the present study is to describe a radioenzymatic assay to determine the activity of three main PLA(2) subtypes in platelets, namely extracellular calcium-dependent PLA(2) (sPLA(2)) and intracellular calcium-dependent (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)). The differentiation of these distinct PLA(2) subtypes was based on the enzyme substrate preference (arachdonic acid or palmitoyl acid) and calcium concentration. Our results indicate that this new assay is feasible, precise and specific to measure the activity of the aforementioned subtypes of PLA(2). Therefore, this protocol can be used to investigate modifications of PLA(2) homeostasis in distinct biological models addressing the pathophysiology of many medical and neuropsychiatric disorders such as schizophrenia and Alzheimer's disease. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Low molecular weight fragments of sulfated galactans (Boc-5 and Boc-10) from the red algae Botryocladia occidentalis significantly inhibited Crotalus durissus cascavella sPLA2 enzymatic activity. Equimolar ratios of sPLA2 to Boc-5 or Boc-10 resulted in allosteric inhibition of sPLA2. Under the conditions tested, we observed that both Boc-5 and Boc-10 strongly decreased edema, myonecrosis, and neurotoxicity induced by native sPLA2.
Resumo:
Context: Species of Baccharis exhibit antibiotic, antiseptic, and wound-healing properties, and have been used in the traditional medicine of South America for the treatment of inflammation, headaches, diabetes, and hepatobiliary disorders.Objective: To investigate the anti-inflammatory activity of organic phases from EtOH extract of the aerial parts of Baccharis uncinella DC (Asteraceae).Materials and methods: The crude EtOH extract from the aerial parts of B. uncinella was subjected to partition procedures and the corresponding CH(2)Cl(2) and EtOAc phases were subjected to several chromatographic separation procedures. Thus, these phases and their purified compounds were assayed for evaluation of anti-inflammatory activity.Results: The CH(2)Cl(2) phase from EtOH extract from B. uncinella contained two triterpenoids (oleanolic and ursolic acids) and one flavonoid (pectolinaringenin), whereas the respective EtOAc phase showed to be composed mainly by two phenylpropanoid derivatives (caffeic and ferulic acids). The CH(2)Cl(2) and EtOAc phases as well as their isolated compounds exhibited anti-inflammatory effects against inflammatory reactions induced by phospholipase A2 (from Crotalus durissus terrificus venom) and by carrageenan.Discussion and conclusion: The results suggested that the components obtained from partition phases of EtOH extract of B. uncinella could represent lead molecules for the development of anti-inflammatory agents. Additionally, the results confirmed the use of Baccharis genus in the traditional medicine of South America for the treatment of inflammation and other heath disorders. To date, the present work describes for the first time the anti-inflammatory effects of compounds isolated from B. uncinella.
Resumo:
Objective: Preclinical and clinical data suggest that lipid biology is integral to brain development and neurodegeneration. Both aspects are proposed as being important in the pathogenesis of schizophrenia. The purpose of this paper is to examine the implications of lipid biology, in particular the role of essential fatty acids (EFA), for schizophrenia. Methods: Medline databases were searched from 1966 to 2001 followed by the crosschecking of references. Results: Most studies investigating lipids in schizophrenia described reduced EFA, altered glycerophospholipids and an increased activity of a calcium-independent phospholipase A2 in blood cells and in post-mortem brain tissue. Additionally, in vivo brain phosphorus-31 Magnetic Resonance Spectroscopy (31P-MRS) demonstrated lower phosphomonoesters (implying reduced membrane precursors) in first- and multi-episode patients. In contrast, phosphodiesters were elevated mainly in first-episode patients (implying increased membrane breakdown products), whereas inconclusive results were found in chronic patients. EFA supplementation trials in chronic patient populations with residual symptoms have demonstrated conflicting results. More consistent results were observed in the early and symptomatic stages of illness, especially if EFA with a high proportion of eicosapentaenoic acid was used. Conclusion: Peripheral blood cell, brain necropsy and 31P-MRS analysis reveal a disturbed lipid biology, suggesting generalized membrane alterations in schizophrenia. 31P-MRS data suggest increased membrane turnover at illness onset and persisting membrane abnormalities in established schizophrenia. Cellular processes regulating membrane lipid metabolism are potential new targets for antipsychotic drugs and might explain the mechanism of action of treatments such as eicosapentaenoic acid.
Resumo:
Phospholipase A(2) hydrolyzes phospholipids at the sn-2 position to cleave the fatty-acid ester bond of L-glycerophospholipids. The catalytic dyad (Asp99 and His48) along with a nucleophilic water molecule is responsible for enzyme hydrolysis. Furthermore, the residue Asp49 in the calcium-binding loop is essential for controlling the binding of the calcium ion and the catalytic action of phospholipase A2. To elucidate the structural role of His48 and Asp49, the crystal structures of three active-site single mutants H48N, D49N and D49K have been determined at 1.9 angstrom resolution. Although the catalytically important calcium ion is present in the H48N mutant, the crystal structure shows that proton transfer is not possible from the catalytic water to the mutated residue. In the case of the Asp49 mutants, no calcium ion was found in the active site. However, the tertiary structures of the three active-site mutants are similar to that of the trigonal recombinant enzyme. Molecular-dynamics simulation studies provide a good explanation for the crystallographic results.
Resumo:
Sphingolipids are essential components of cell membranes, and many of them regulate vital cell functions. In particular, ceramide plays crucial roles in cell signaling processes. Two major actions of ceramides are the promotion of cell cycle arrest and the induction of apoptosis. Phosphorylation of ceramide produces ceramide 1-phosphate (C1P), which has opposite effects to ceramide. C1P is mitogenic and has prosurvival properties. In addition, C1P is an important mediator of inflammatory responses, an action that takes place through stimulation of cytosolic phospholipase A2, and the subsequent release of arachidonic acid and prostaglandin formation. All of the former actions are thought to be mediated by intracellularly generated C1P. However, the recent observation that C1P stimulates macrophage chemotaxis implicates specific plasma membrane receptors that are coupled to Gi proteins. Hence, it can be concluded that C1P has dual actions in cells, as it can act as an intracellular second messenger to promote cell survival, or as an extracellular receptor agonist to stimulate cell migration.