925 resultados para Oxytocin antagonist


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developmental processes are regulated by the bone morphogenetic protein (BMP) family of secreted molecules. BMPs bind to serine/threonine kinase receptors and signal through the canonical Smad pathway and other intracellular effectors. Integral to the control of BMPs is a diverse group of secreted BMP antagonists that bind to BMPs and prevent engagement with their cognate receptors. Tight temporospatial regulation of both BMP and BMP-antagonist expression provides an exquisite control system for developing tissues. Additional facets of BMP-antagonist biology, such as crosstalk with Wnt and Sonic hedgehog signaling during development, have been revealed in recent years. In addition, previously unappreciated roles for the BMP antagonists in kidney fibrosis and cancer have been elucidated. This review provides a description of BMP-antagonist biology, together with highlights of recent novel insights into the role of these antagonists in development, signal transduction and human disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable nonselective cation channels implicated in diverse physiological functions, including smooth muscle contractility and synaptic transmission. However, lack of potent selective pharmacological inhibitors for TRPC channels has limited delineation of the roles of these channels in physiological systems. Here we report the identification and characterization of ML204 as a novel, potent, and selective TRPC4 channel inhibitor. A high throughput fluorescent screen of 305,000 compounds of the Molecular Libraries Small Molecule Repository was performed for inhibitors that blocked intracellular Ca(2+) rise in response to stimulation of mouse TRPC4ß by µ-opioid receptors. ML204 inhibited TRPC4ß-mediated intracellular Ca(2+) rise with an IC(50) value of 0.96 µm and exhibited 19-fold selectivity against muscarinic receptor-coupled TRPC6 channel activation. In whole-cell patch clamp recordings, ML204 blocked TRPC4ß currents activated through either µ-opioid receptor stimulation or intracellular dialysis of guanosine 5'-3-O-(thio)triphosphate (GTP?S), suggesting a direct interaction of ML204 with TRPC4 channels rather than any interference with the signal transduction pathways. Selectivity studies showed no appreciable block by 10-20 µm ML204 of TRPV1, TRPV3, TRPA1, and TRPM8, as well as KCNQ2 and native voltage-gated sodium, potassium, and calcium channels in mouse dorsal root ganglion neurons. In isolated guinea pig ileal myocytes, ML204 blocked muscarinic cation currents activated by bath application of carbachol or intracellular infusion of GTP?S, demonstrating its effectiveness on native TRPC4 currents. Therefore, ML204 represents an excellent novel tool for investigation of TRPC4 channel function and may facilitate the development of therapeutics targeted to TRPC4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the discovery and development of the first highly selective, small molecule antagonist of the muscarinic acetylcholine receptor subtype I (mAChR1 or M-1). An M-1 functional, cell-based, calcium-mobilization assay identified three distinct chemical series with initial selectivity for M-1 versus M-4. An iterative parallel synthesis approach was employed to optimize all three series in parallel, which led to the development of novel microwave-assisted chemistry and provided important take home lessons for probe development projects. Ultimately, this effort produced VU0255035, a potent (IC50 = 130 nM) and selective (>75-fold vs. M-2-M-5 and >10 mu M vs. a panel of 75 GPCRs, ion channels and transporters) small molecule M-1 antagonist. Further profiling demonstrated that VU0255035 was centrally penetrant (Brain(AUC)/Plasma(AUC) of 0.48) and active in vivo, rendering it acceptable as both an in vitro and in vivo MLSCN/MLPCN probe molecule for studying and dissecting M-1 function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies suggest that selective antagonists of specific subtypes of muscarinic acetylcholine receptors (mAChRs) may provide a novel approach for the treatment of certain central nervous system (CNS) disorders, including epileptic disorders, Parkinson's disease, and dystonia. Unfortunately, previously reported antagonists are not highly selective for specific mAChR subtypes, making it difficult to definitively establish the functional roles and therapeutic potential for individual subtypes of this receptor subfamily. The M 1 mAChR is of particular interest as a potential target for treatment of CNS disorders. We now report the discovery of a novel selective antagonist of M-1 mAChRs, termed VU0255035 [N-(3-oxo-3-(4-(pyridine-4-yl)piperazin-1-yl)propyl)benzo[c][1,2,5]thiadiazole-4-sulfonamide]. Equilibrium radioligand binding and functional studies demonstrate a greater than 75-fold selectivity of VU0255035 for M-1 mAChRs relative to M-2-M-5. Molecular pharmacology and mutagenesis studies indicate that VU0255035 is a competitive orthosteric antagonist of M-1 mAChRs, a surprising finding given the high level of M-1 mAChR selectivity relative to other orthosteric antagonists. Whole-cell patch-clamp recordings demonstrate that VU0255035 inhibits potentiation of N-methyl-D-aspartate receptor currents by the muscarinic agonist carbachol in hippocampal pyramidal cells. VU0255035 has excellent brain penetration in vivo and is efficacious in reducing pilocarpine-induced seizures in mice. We were surprised to find that doses of VU0255035 that reduce pilo-carpine-induced seizures do not induce deficits in contextual freezing, a measure of hippocampus-dependent learning that is disrupted by nonselective mAChR antagonists. Taken together, these data suggest that selective antagonists of M-1 mAChRs do not induce the severe cognitive deficits seen with nonselective mAChR antagonists and could provide a novel approach for the treatment certain of CNS disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the molecular mechanism of antagonist unbinding in the ß(1) and ß(2) adrenoceptors investigated by steered molecular dynamics, we attempt to provide further possibilities of ligand subtype and subspecies selectivity. We have simulated unbinding of ß(1) -selective Esmolol and ß(2) -selective ICI-118551 from both receptors to the extracellular environment and found distinct molecular features of unbinding. By calculating work profiles, we show different preference in antagonist unbinding pathways between the receptors, in particular, perpendicular to the membrane pathway is favourable in the ß(1) adrenoceptor, whereas the lateral pathway involving helices 5, 6 and 7 is preferable in the ß(2) adrenoceptor. The estimated free energy change of unbinding based on the preferable pathway correlates with the experimental ligand selectivity. We then show that the non-conserved K347 (6.58) appears to facilitate in guiding Esmolol to the extracellular surface via hydrogen bonds in the ß(1) adrenoceptor. In contrast, hydrophobic and aromatic interactions dominate in driving ICI-118551 through the easiest pathway in the ß(2) adrenoceptor. We show how our study can stimulate design of selective antagonists and discuss other possible molecular reasons of ligand selectivity, involving sequential binding of agonists and glycosylation of the receptor extracellular surface. © 2012 John Wiley & Sons A/S.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased numbers of neutrophils are reported in the airways of patients with severe asthma. It is not clear if they contribute to the lack of control and severity. There are currently no strategies to investigate this by decreasing neutrophil numbers in the airways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seven-transmembrane receptors (7TMRs), also termed G protein-coupled receptors (GPCRs), form the largest class of cell surface membrane receptors, involving several hundred members in the human genome. Near 30% of marketed pharmacological agents target 7TMRs. 7TMRs adopt multiple conformations upon agonist binding. Biased agonists, in contrast to non-biased agonists, are believed to stabilize conformations preferentially activating either G-protein- or ß-arrestin-dependent signalling pathways. However, proof that cognate conformations of receptors display structural differences within their binding site where biased agonism initiates, are still lacking. Here, we show that a non-biased agonist, cholecystokinin (CCK) induces conformational states of the CCK2R activating Gq-protein-dependent pathway (CCK2RG) or recruiting ß-arrestin2 (CCK2Rß) that are pharmacologically and structurally distinct. Two structurally unrelated antagonists competitively inhibited both pathways. A third ligand (GV150,013X), acted as a high affinity competitive antagonist on CCK2RG but was nearly inefficient as inhibitor of CCK2Rß. Several structural elements on both GV150,013X and in CCK2R binding cavity, which hinder binding of GV150,013X only to the CCK2Rß were identified. At last, proximity between two conserved amino acids from transmembrane helices 3 and 7 interacting through sulphur-aromatic interaction was shown to be crucial for selective stabilization of the CCK2Rß state. These data establish structural evidences for distinct conformations of a 7TMR associated with ß-arrestin-2 recruitment or G-protein coupling and validate relevance of the design of biased ligands able to selectively target each functional conformation of 7TMRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cushing's syndrome (CS) is a disorder associated with significant morbidity and mortality due to prolonged exposure to high cortisol concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxytocin (OT) influences how humans process information about others. Whether OT affects the processing of information about oneself remains unknown. Using a double-blind, placebo-controlled within-subject design, we recorded event-related potentials (ERPs) from adults during trait judgments about oneself and a celebrity and during judgments on word valence, after intranasal OT or placebo administration. We found that OT vs. placebo treatment reduced the differential amplitudes of a fronto-central positivity at 220-280 ms (P2) during self- vs. valence-judgments. OT vs. placebo treatment tended to reduce the differential amplitude of a late positive potential at 520-1000 ms (LPP) during self-judgments but to increase the differential LPP amplitude during other-judgments. OT effects on the differential P2 and LPP amplitudes to self- vs. celebrity-judgments were positively correlated with a measure of interdependence of self-construals. Thus OT modulates the neural correlates of self-referential processing and this effect varies as a function of interdependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs). Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin gene-related peptide, kinestatin—a specific bradykinin B2-receptor antagonist from the skin of the giant fire-bellied toad, Bombina maxima. Here, we describe the identification, structural and functional characterization of a heptadecapeptide (DYTIRTRLHQGLSRKIV), named ranakinestatin-PPF, from the skin of the Chinese ranid frog, Pelophylax plancyi fukienensis, representing a prototype of a novel class of bradykinin B2-receptor specific antagonist. Using a preconstricted preparation of rat tail arterial smooth muscle, a single dose of 10−6 M of the peptide effectively inhibited the dose-dependent relaxation effect of bradykinin between 10−11 M and 10−5 M and subsequently, this effect was pharmacologically-characterized using specific bradykinin B1- (desArg-HOE140) and B2-receptor (HOE140) antagonists; the data from which demonstrated that the antagonism of the novel peptide was mediated through B2-receptors. Ranakinestatin—PPF—thus represents a prototype of an amphibian skin peptide family that functions as a bradykinin B2-receptor antagonist herein demonstrated using mammalian vascular smooth muscle.