989 resultados para Osteoblast, Calvaria, Organ Culture, FGF2, BMP2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bites from snake (Bothrops genus) cause local tissue damage and systemic complications, which include alterations such as hemostatic system and acute renal failure (ARF). Recent studies suggest that ARF pathogenesis in snakebite envenomation is multifactorial and involves hemodynamic disturbances, immunologic reactions and direct nephrotoxicity. The aim of the work was to investigate the effects of the Bothrops leucurus venom (BlV) in the renal perfusion system and in cultured renal tubular cells of the type MDCK (Madin-Darby Canine kidney). BlV (10 μg/mL) reduced the perfusion pressure at 90 and 120 min. The renal vascular resistance (RVR) decreased at 120 min of perfusion. The effect on urinary flow (UF) and glomerular filtration rate (GFR) started 30 min after BlV infusion, was transient and returned to normal at 120 min of perfusion. It was also observed a decrease on percentual tubular transport of sodium (%TNa+) at 120 min and of chloride (%TCl-) at 60 and 90 min. The treatment with BlV caused decrease in cell viability to the lowest concentration tested with an IC50 of 1.25 μg/mL. Flow cytometry with annexin V and propidium iodide showed that cell death occurred predominantly by necrosis. However, a cell death process may involve apoptosis in lower concentrations. BlV treatment (1.25 μg/mL) led to significant depolarization of the mitochondrial membrane potential and, indeed, we found an increase in the expression of cell death genes in the lower concentrations tested. The venom also evoked an increase in the cytosolic Ca2+ in a concentration dependent manner, indicating that Ca2+ may participate in the venom of B. leucurus effect. The characterization of the effects in the isolated kidney and renal tubular cells gives strong evidences that the acute renal failure induced by this venom is a result of the direct nephrotoxicity which may involve the cell death mechanism. © 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient cryopreservation protocol was developed for mature seeds of Oncidium flexuosum Sims. Seed morphology, protocorm formation, and early seedling development were also assessed. The effects of phloroglucinol and Supercool X-1000® as cryoprotectant additives in the vitrification solution were investigated. Dehydration using the plant vitrification solution 2 (PVS2) for 60 and 120 min prior to immersion in liquid nitrogen promoted the highest frequency of in vitro seed germination 6 weeks following culture on half-strength Murashige and Skoog (1/2 MS) medium. Mature seeds submitted to vitrification for 120 min in PVS2 and 1 % phloroglucinol at 0 °C enhanced germination by 68 %, whereas in PVS2 and 1 % Supercool X-1000® germination was just moderately enhanced (26 %). In vitro-germinating seedlings developed healthy shoots and roots without the use of plant growth regulators. After 6 months of growth, there were no differences between in vitro- and ex vitro-grown seedlings for various phenotypic characteristics, including shoot length, number of leaves, number and length of roots, and fresh and dry weight. Seedlings were transferred to greenhouse conditions and successfully acclimatized, further developing into normal plants with over 90 % survival. Comparative analysis of seedlings from control and vitrified seeds using flow cytometry indicated that no change in ploidy levels occurred as a result of cryopreservation, therefore maintaining seedlings genetic stability. In this study, vitrification with PVS2 for 120 min with the addition of 1 % phloroglucinol offers a simple, safe, and feasible protocol for cryopreservation of O. flexuosum mature seeds. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protoplast fusion between sweet orange and mandarin/mandarin hybrids scion cultivars was performed following the model "diploid embryogenic callus protoplast + diploid mesophyll-derived protoplast". Protoplasts were isolated from embryogenic calli of 'Pera' and 'Westin' sweet orange cultivars (Citrus sinensis) and from young leaves of 'Fremont', Nules', and 'Thomas' mandarins (C. reticulata), and 'Nova' tangelo [C. reticulata x (C. paradisi x C. reticulata)]. The regenerated plants were characterized based on their leaf morphology (thickness), ploidy level, and simple sequence repeat (SSR) molecular markers. Plants were successfully generated only when 'Pera' sweet orange was used as the embryogenic parent. Fifteen plants were regenerated being 7 tetraploid and 8 diploid. Based on SSR molecular markers analyses all 7 tetraploid regenerated plants revealed to be allotetraploids (somatic hybrids), including 2 from the combination of 'Pera' sweet orange + 'Fremont' mandarin, 3 'Pera' sweet orange + 'Nules' mandarin, and 2 'Pera' sweet orange + 'Nova' tangelo, and all the diploid regenerated plants showed the 'Pera' sweet orange marker profile. Somatic hybrids were inoculated with Alternaria alternata and no disease symptoms were detected 96 h post-inoculation. This hybrid material has the potential to be used as a tetraploid parent in interploid crosses for citrus scion breeding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to characterize the anatomical events and ultrastructural aspects of direct and indirect in vitro organogenesis in Passiflora edulis. Root explants were cultured on induction medium, supplemented with 4.44 mu M 6-benzyladenine. Roots at different stages of development were collected and processed for observation by light microscopy and scanning and transmission electron microscopy. Patterns of direct and indirect regeneration were observed in the explants. During direct organogenesis, the organogenic buds and nodules, formed from meristemoids, originated from the pericycle regions distant from the cut surface. Completely differentiated buds were observed after 20 days of culture. During indirect organogenesis, bud formation occurred via meristemoids at the periphery of the calli, which differentiated from the cortical region of the initial explant. Regardless of the regeneration pattern, the meristemoids had similar ultrastructural characteristics; however, differences were reported in the nuclear shape of the cells of the meristemoids formed directly and indirectly. This study provides important information for enhancing the understanding and characterization of the organogenic process in non-meristematic explants and provides information on the use of roots as explants in genetic transformation protocols for this important tropical species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physiological and molecular processes controlling zygotic and somatic embryo development in angiosperms are mediated by a hierarchically organized program of gene expression. Despite the overwhelming information available about the molecular control of the embryogenic processes in angiosperms, little is known about these processes in gymnosperms. Here we describe the cloning and characterization of the expression pattern of the Araucaria angustifolia putative homolog of a SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene family member, designated as AaSERK1. The Araucaria AaSERK1 gene encodes a leucine-rich repeat receptor-like kinase showing significant similarity to angiosperm homologs of SERK1, known to be involved in early somatic and zygotic embryogenesis. Accordingly, RT-PCR results showed that AaSERK1 is preferentially expressed in Araucaria embryogenic cell cultures. Additionally, in situ hybridization results showed that AaSERK1 transcripts initially accumulate in groups of cells at the periphery of the embryogenic calli and then are restricted to the developing embryo proper. Our results indicate that AaSERK1 might have a role during somatic embryogenesis in Araucaria, suggesting a potentially conserved mechanism, involving SERK-related leucine-rich repeat receptor-like kinases, in the embryogenic processes among all seed plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Callogenesis, somatic embryogenesis, and regeneration were obtained from tissues of unfertilized ovaries of sweet orange (Citrus sinensis Osbeck.) cv. Tobias. The influence of two modified basal media, woody plant medium (WPM) and N6 medium, to induce callus formation from pistils was determined. Overall, high frequencies of callogenesis were observed when either medium was used. However, initial culture of explants in WPM medium followed by transfer of callus to N6 medium resulted in higher frequency of callus induction (of 2.30 callus per explant that were larger than 0.5 cm in size), and of subsequent development of embryogenic callus (10%). A total of 125 somatic embryos were obtained. After 6 months of culture, 72% of somatic embryos germinated into plantlets. These plantlets were subsequently micrografted in vitro, and then acclimatized. Ploidy of these plants were determined using flow cytometry and TRAPS molecular markers were used to confirm their maternal origin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazilian pine (Araucaria angustifolia (Bert) O. Ktze) is the only native conifer species with economic importance in Brazil. Recently, due to intensive exploitation Brazilian pine was included in the official list of endangered Brazilian plants, under the "vulnerable" category. Biotechnology tools like somatic embryogenesis (SE) are potentially useful for mass clonal propagation and ex situ conservation strategies of commercial and endangered plant species. In spite of that, numerous obstacles still hamper the full application of SE technology for a wider range of species, including Brazilian pine. To enhance somatic embryogenesis in Brazilian pine and to gain a better understanding of the molecular events associated with somatic embryo development, we analyzed the steady-state transcript levels of genes known to regulate somatic embryogenesis using semiquantitative reverse transcription polymerase chain reaction (sqRT-PCR). These genes included Argonaute (AaAGO), Cup-shaped cotyledon1 (AaCUC), wushel-related WOX (AaWOX), a S-locus lectin protein kinase (AaLecK), Scarecrow- like (AaSCR), Vicilin 7S (AaVIC), Leafy Cotyledon 1 (AaLEC), and a Reversible glycosylated polypeptide (AaRGP). Expression patterns of these selected genes were investigated in embryogenic cultures undergoing different stages of embryogenesis, and all the way to maturation. Up-regulation of AaAGO, AaCUC, AaWOX, AaLecK, and AaVIC was observed during transition of somatic embryos from stage I to stage II. During the maintenance phase of somatic embryogenesis, expression of AaAGO and AaSCR, but not AaRPG and AaLEC genes was influenced by presence/ absence of plant growth regulators, both auxins and cytokinins. The results presented here provide new insights on the molecular mechanisms responsible for somatic embryo formation, and how selected genes may be used as molecular markers for Brazilian pine embryogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The arterial wall contains MSCs with mesengenic and angiogenic abilities. These multipotent precursors have been isolated from variously-sized human adult segments, belying the notion that vessel wall is a relatively quiescent tissue. Recently, our group identified in normal human arteries a vasculogenic niche and subsequently isolated and characterized resident MSCs (VW-MSCs) with angiogenic ability and multilineage potential. To prove that VW-MSCs are involved in normal and pathological vascular remodeling, we used a long-term organ culture system; this method was of critical importance to follow spontaneous 3-D vascular remodeling without any influence of blood cells. Next we tried to identify and localize in situ the VW-MSCs and to understand their role in the vascular remodeling in failed arterial homografts. Subsequently, we isolated this cell population and tested in vitro their multilineage differentiation potential through immunohistochemical, immunofluorescence, RT-PCR and ultrastructural analysis. From 25-30cm2 of each vascular wall homograft sample, we isolated a cell population with MSCs properties; these cells expressed MSC lineage molecules (CD90, CD44, CD105, CD29, CD73), stemness (Notch-1, Oct-4, Sca-1, Stro-1) and pericyte markers (NG2) whilst were negative for hematopoietic and endothelial markers (CD34, CD133, CD45, KDR, CD146, CD31 and vWF). MSCs derived from failed homografts (H-MSCs) exhibited adipogenic, osteogenic and chondrogenic potential but scarce propensity to angiogenic and leiomyogenic differentiation. The present study demonstrates that failed homografts contain MSCs with morphological, phenotypic and functional MSCs properties; H-MSCs are long-lived in culture, highly proliferating and endowed with prompt ability to differentiate into adipocytes, osteocytes and chondrocytes; compared with VW-MSCs from normal arteries, H-MSCs show a failure in angiogenic and leiomyogenic differentiation. A switch in MSCs plasticity could be the basis of pathological remodeling and contribute to aneurysmal failure of arterial homografts. The study of VW-MSCs in a pathological setting indicate that additional mechanisms are involved in vascular diseases; their knowledge will be useful for opening new therapeutic options in cardiovascular diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND CONTEXT The fate of human mesenchymal stem cells (hMSCs) supplied to the degenerating intervertebral disc (IVD) is still not fully understood and can be negatively affected by low oxygen, pH, and glucose concentration of the IVD environment. The hMSC survival and yield upon injection of compromised IVD could be improved by the use of an appropriate carrier and/or by predifferentiation of hMSCs before injection. PURPOSE To optimize hMSC culture conditions in thermoreversible hyaluronan-based hydrogel, hyaluronan-poly(N-isopropylacrylamide) (HA-pNIPAM), to achieve differentiation toward the disc phenotype in vitro, and evaluate whether preconditioning contributes to a better hMSC response ex vivo. STUDY DESIGN In vitro and ex vivo whole-organ culture of hMSCs. METHODS In vitro cultures of hMSCs were conducted in HA-pNIPAM and alginate for 1 week under hypoxia in chondropermissive medium alone and with the supplementation of transforming growth factor β1 or growth and differentiation factor 5 (GDF-5). Ex vivo, hMSCs were either suspended in HA-pNIPAM and directly supplied to the IVDs or predifferentiated with GDF-5 for 1 week in HA-pNIPAM and then supplied to the IVDs. Cell viability was evaluated by Live-Dead assay, and DNA, glycosaminoglycan (GAG), and gene expression profiles were used to assess hMSC differentiation toward the disc phenotype. RESULTS The HA-pNIPAM induced hMSC differentiation toward the disc phenotype more effectively than alginate: in vitro, higher GAG/DNA ratio and higher collagen type II, SOX9, cytokeratin-19, cluster of differentiation 24, and forkhead box protein F1 expressions were found for hMSCs cultured in HA-pNIPAM compared with those cultured in alginate, regardless of the addition of growth factors. Ex vivo, direct combination of HA-pNIPAM with the disc environment induced a stronger disc-like differentiation of hMSCs than predifferentiation of hMSCs followed by their delivery to the discs. CONCLUSIONS Hyaluronan-based thermoreversible hydrogel supports hMSC differentiation toward the disc phenotype without the need for growth factor supplementation in vitro and ex vivo. Further in vivo studies are required to confirm the suitability of this hydrogel as an effective stem cell carrier for the treatment of IVD degeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleus pulposus (NP) regeneration by the application of injectable cell-embedded hydrogels is an appealing approach for tissue engineering. We investigated a thermo-reversible hydrogel (TR-HG), based on a modified polysaccharide with a thermo-reversible polyamide [poly(N-isopropylacrylamide), pNIPAM], which is made to behave as a liquid at room temperature and hardens at > 32 °C. In order to test the hydrogel, a papain-induced bovine caudal disc degeneration model (PDDM), creating a cavity in the NP, was employed. Human mesenchymal stem cells (hMSCs) or autologous bovine NP cells (bNPCs) were seeded in TR-HG; hMSCs were additionally preconditioned with rhGDF-5 for 7 days. Then, TR-HG was reversed to a fluid and the cell suspension injected into the PDDM and kept under static loading for 7 days. Experimental design was: (D1) fresh disc control + PBS injection; (D2) PDDM + PBS injection; (D3) PDDM + TR-HG (material control); (D4) PDDM + TR-HG + bNPCs; (D5) PDDM + TR-HG + hMSCs. Magnetic resonance imaging performed before and after loading, on days 9 and 16, allowed imaging of the hydrogel-filled PDDM and assessment of disc height and volume changes. In gel-injected discs the NP region showed a major drop in volume and disc height during culture under static load. The RT–PCR results of injected hMSCs showed significant upregulation of ACAN, COL2A1, VCAN and SOX9 during culture in the disc cavity, whereas the gene expression profile of NP cells remained unchanged. The cell viability of injected cells (NPCs or hMSCs) was maintained at over 86% in 3D culture and dropped to ~72% after organ culture. Our results underline the need for load-bearing hydrogels that are also cyto-compatible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periodontal disease is the major cause of tooth loss in man. The initial histological picture of the inflamed gingiva is characteristic of local inflammatory reaction involving polymorphonuclear leukocytes, vasculitis and localized tissue loss. Subsequent clinical stages of periodontal disease (mild gingivitis) show histological evidence of the involvement of the immune response with initial accumulation of macrophages, and lymphocytes devoid of surface staining immunoglobulins (presumably T cells). As the disease progresses, a predominance of surface and cytoplasmic staining lymphocytes and plasma cells are seen (severe gingivitis and periodontitis). Whether the occurrence of the immunoglobulin positive lymphocytes and the concurrent loss of collagen and resorption of alveolar bone seen in periodontitis is indicative of a direct cause and effect relationship has been a controversy.^ The majority of investigations in the periodontal field have involved the use of peripheral blood lymphocytes or serum. Blastogenic responses of peripheral blood lymphocytes and serum antibody titers from periodontal patients to a variety of oral bacteria have not shown any correlation between response and the severity of disease. The need to study the local immune response in inflamed gingiva is apparent. Since there are no baseline studies on the functional capabilities of the lymphoid cells present in gingiva from periodontitis patients, an in depth study involving the role of the immunoglobulin positive lymphocytes was investigated.^ Inflamed gingiva from four clinically defined periodontal disease states (mild gingivitis, severe gingivitis, periodontitis and severe periodontitis) were placed in gingival organ cultures. Class specific immunoglobulins were quantitated in gingival organ culture supernatants using an indirect sandwich technique. A significant difference in mean levels of IgA and IgG was seen between mild gingivitis and periodontitis (P < .00l, P = .001), as well as in IgG levels between periodontitis and severe periodontitis (P = .001). The predominance of IgG in gingival organ culture supernatants and the statistically significant findings that the overall mean levels of IgG between mild gingivitis and periodontitis (P = .014) and between severe periodontitis and periodontitis (P = .001) suggested a possible indicator of periodontal disease. The presence of IgG in gingival organ culture supernatants was shown to be a product of actively secreting plasma cells. The incorporation of radiolabelled amino acids into IgG was noted over a seven-day period with a peak response at day 4-5. The inhibition of IgG synthesis by cyclohexamide confirmed the contention that IgG was a product of de novo synthesis and not serum derived.^ The specificity of immunoglobulins derived from gingival organ cultures were studied using a whole bacterial agglutination test. Oral bacteria frequently cultured from periodontal patients were assessed for their ability to be agglutinated by gingival organ culture supernatants. A positive correlation of antibody titer and severity of disease was seen with five strains of Actinomyces viscosus, two of Actinomyces naeslundii and one Actinomyces israelii. The agglutination of bacteria was shown to be due to the specific interaction of immunoglobulin and cell-wall antigen. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Previous studies on the influence of torsion and combined torsion-compression loading revealed a positive effect on the cell viability when a repetitive short-term torsion was applied at a physiological magnitude to intervertebral disc organ culture.1 However, after an extended period (8 hours) of combined torsion-compression loading, substantial cell death was detected in the nucleus pulposus (NP).2 In this follow-up study, we aimed to investigate the relationship, if any, between the duration of torsion applied to the intervertebral disc (IVD) and the level of NP cell viability. Materials and Methods Bovine caudal discs were harvested and cultured in a custom-built multiaxis dynamic loading bioreactor.2 Torsion (± 2 degrees) was applied to the samples at a frequency of 0.2 Hz. Torsion was applied for durations of 0, 1, 4, and 8 h/d, repeated over 7 days. After the last day of loading, disc tissue was dissected for analysis of cell viability and gene expression. Results Disc NP cell viability remained above 85% after torsional loading for 0, 1, or 4 h/d. Viability was statistical significantly reduced to below 70% when torsion was applied for 8 h/d (p = 0.03) (Table 1). The daily duration of torsional loading did not affect the AF cell viability (> 80% for all loading durations). The trend of collagen 2 gene upregulation and matrix metalloproteases 13 downregulation with an increasing duration of torsion was observed in both NP and AF (Fig. 1).Conclusion We have demonstrated that an extended duration of torsion could inhibit the survival of NP cells within the IVD in organ culture. Acknowledgments Funds from the Orthopedic Department of the Insel University Hospital of Bern and a private donation from Prof. Dr. Paul Heini, Spine Surgeon, Sonnenhof Clinic Bern were received to support this work. Disclosure of Interest None declared References References 1 Chan SC, Ferguson SJ, Wuertz K, Gantenbein-Ritter B. Biological response of the intervertebral disc to repetitive short-term cyclic torsion. Spine 2011;36(24):2021–2030 2 Chan SC, Walser J, Käppeli P, Shamsollahi MJ, Ferguson SJ, Gantenbein-Ritter B. Region specific response of intervertebral disc cells to complex dynamic loading: an organ culture study using a dynamic torsion-compression bioreactor. PLoS ONE 2013;8(8):e72489

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Treating low back pain (LBP) has become an increasing challenge, as it is one of the main factors causing pain and is accompanied by high costs for the individual and the society. LBP can be caused by trauma of the intervertebral disc (IVD) or IVD degeneration. In the case of disc herniation the inner gelatinous part of the IVD, called nucleus pulposus, is pressed through the fibrous, annulus fibrosus that forms the outer part of the IVD. Today’s gold standard for treatment is extensive surgery as removal of the IVD and fusion of the vertebrae. In order to find a more gentle way to treat LBP and restore the native IVD we use a novel silk fleece-membrane composite from genetically modified silk worms whose silk contains a growth factor (GDF-6) that is associated with pushing stem cells towards a disc like phenotype (1). By combining it with a genipin-enhanced fibrin hydrogel we tested its suitability in organ culture on prior injured bovine IVD in our custom built two-degree of freedom bioreactor to mimic natural loading conditions. Material & Methods: Bovine IVDs of 12-17 months old animals were isolated by first removing all surrounding tissue followed by cutting out the IVDs as previously described (2). Culturing of discs occurred in high glucose Dulbecco's Modified Eagle Medium (HG-DMEM) supplemented with 5% serum as previously described (2). On the next day injury was induced using a 2mm biopsy punch (Polymed, Switzerland). The formed cavity was filled with (0.4%) genipin-enhanced human based fibrin hydrogel (35-55mg/mL human fibrinogen, Baxter, Austria) and sealed with a silk fleece-membrane composite (Spintec Engineering, Germany). Different culture conditions were applied: free swelling, static diurnal load of 0.2MPa for 8h/d and complex loading at 0.2MPa compression combined with ± 2° torsion at 0.2Hz for 8h/d (2). After 14 days of culture cell activity was determined with resazurin assay. Additionally, glycosaminoglycan (dimethyl-methylene blue), DNA (Hoechst) and collagen content (hydroxy- proline) were determined. Finally, real-time qPCR of major IVD marker and inflammation genes was performed to judge integrity of IVDs. Results: The fibrin hydrogel is able to keep the silk seal in place throughout the 14 days of in organ culture under all conditions. Additionally, cell activity showed optimistic results and we could not confirm negative effects of the repaired discs regarding overexpression of inflammation markers. Conclusions: The genipin-enhanced fibrin hydrogel in combination with the silk fleece- membrane composite seems to be a promising approach for IVD repair. Currently we assess the capability of GDF-6 incorporated in our silk composites on human mesenchymal stem cells and later on in organ culture. References 1. Clarke LE, McConnell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition and micromechanical properties of nucleus pulposus constructs. Arthritis Res Ther 2014, Mar 12;16(2):R67. 2. Chan SC, Gantenbein-Ritter B. Preparation of intact bovine tail intervertebral discs for organ culture. J Vis Exp 2012, Feb 2;60(60):e3490. Acknowledgements. This work is funded by the Gebert Rüf Foundation, project number GRS-028/13.