993 resultados para Organic semiconductor, OLED, OFET, OPV


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the experimental results of a mode-locked diode-end-pumped Nd:YAG laser with a semiconductor saturable absorber mirror (SESAM) from which we achieved a 10 ps pulse duration at 150 MHz repetition rate. The SESAM was grown by metal organic chemical vapour deposition at low temperature. The recovery time was measured to be 0.5 ps, indicating the potential pulse compression to sub-picoseconds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A comparative study on the annealing of the ITO substrates and the organic layers were conducted on Organic light-emitting device (OLED). We fabricated four devices with the structure of Al/Alq(3)/TPD: PVK/NiO/ITO/Glass, and investigated the effect of heat on device performance by selectively annealing. When the TPD: PVK layers were annealed at 90 degrees C with 30 min annealing time and the ITO substrates were annealed at 300 degrees C with a constant annealing time (100 min). We find the OLED shows obvious performance improvement in brightness and current efficiency, which is attributable to the fact that annealing reduces defects and improves the interface structures of the organics and the organic/ITO interfaces. On the other hand, an appropriate annealing would slow the transportation of the hole, thus finally leads to more balanced electron and hole.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Organic white-light-emitting devices ( OLEDs) based on a multimode resonant microcavity defined by a pair of dielectric mirrors and metal mirrors were presented. By selective effects of the quarter-wave dielectric stack mirror on mode, white light emission containing three individual narrow peaks of red, green and blue was achieved, and showed weak dependence on the viewing angle. The Commission Internationale De L'Eclairage ( CIE) chromaticity coordinates changed from ( 0.29, 0.37) at 0 degrees to ( 0.31, 0.33) at 40 degrees. Furthermore, the brightness and electroluminescence efficiency of the microcavity OLEDs were enhanced compared with noncavity OLEDs. The maximum brightness reached 1940 cd m(-2) at a current density of 200 mA cm(-2), and the maximum current efficiency and power efficiency are 1.6 cd A(-1) at a current density of 12 mA cm(-2) and 0.41 1m W-1 at a current density of 1.6 mA cm(-2), which are over 1.6 times higher than that of a noncavity OLED.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ambient reflection of organic light-emitting diodes (OLEDs) is reduced by utilizing a multilayer low-reflection cathode. The low-reflection cathode structure consists of a semitransparent cathode layer, a transparent spacing layer and a high reflective layer. Metals with different optical properties, including silver (Ag) and samarium (Sm), are used as the semitransparent cathode layer, tris(8-quinolinolato) aluminium (Alq(3)) and aluminium (Al) are used as the spacing layer and high reflective layer, respectively. The incident ambient light could be reduced by the cathode structure via destructive optical interference. It is found that the Ag/Alq(3)/Al cathode shows a strong wavelength-dependent reflection. However, the Sm/Alq(3)/Al cathode demonstrates a low reflection in the whole visible range, and the resulting OLED shows a reduced luminous reflectance of 2.7% as compared to 81% for a control device with LiF/Al cathode. A further reduction to 0.9% is realized by replacing a multilayer of Alq(3)/Sm/Alq(3) for the single layer of Alq(3).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A polyelectrolyte/polymeric semiconductor core/shell structure is developed for organic field-effect transistors (OFETs) based on sulfonated poly(arylene ether ketone)/polyaniline core/shell nanofibers via electrospinning and solution-phase selective polymerization. The polyelectrolyte does not work as a gate dielectric, but can provide an internal modulation from the nanointerface of the 1D core/shell nanostructure. The transistor devices display very high mobilities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple model is developed for the admittance of a metal-insulator-semiconductor (MIS) capacitor which includes the effect of a guard ring surrounding the Ohmic contact to the semiconductor. The model predicts most of the features observed in a MIS capacitor fabricated using regioregular poly(3-hexylthiophene) as the active semiconductor and polysilsesquioxane as the gate insulator. In particular, it shows that when the capacitor is driven into accumulation, the parasitic transistor formed by the guard ring and Ohmic contact can give rise to an additional feature in the admittance-voltage plot that could be mistaken for interface states. When this artifact and underlying losses in the bulk semiconductor are accounted for, the remaining experimental feature, a peak in the loss-voltage plot when the capacitor is in depletion, is identified as an interface (or near interface) state of density of similar to 4 x 10(10) cm(-2) eV(-1). Application of the model shows that exposure of a vacuum-annealed device to laboratory air produces a rapid change in the doping density in the channel region of the parasitic transistor but only slow changes in the bulk semiconductor covered by the gold Ohmic contact. (C) 2008 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The possibility of combining different functionalities in a single device is of great relevance for further development of organic electronics in integrated components and circuitry. Organic light-emitting transistors (OLETs) have been demonstrated to be able to combine in a single device the electrical switching functionality of a field-effect transistor and the capability of light generation. A novel strategy in OLET realization is the tri-layer vertical hetero-junction. This configuration is similar to the bi-layer except for the presence of a new middle layer between the two transport layers. This “recombination” layer presents high emission quantum efficiency and OLED-like (Organic Light-Emitting Diode) vertical bulk mobility value. The key idea of the vertical tri-layer hetero-junction approach in realizing OLETs is that each layer has to be optimized according to its specific function (charge transport, energy transfer, radiative exciton recombination). Clearly, matching the overall device characteristics with the functional properties of the single materials composing the active region of the OFET, is a great challenge that requires a deep investigation of the morphological, optical and electrical features of the system. As in the case of the bi-layer based OLETs, it is clear that the interfaces between the dielectric and the bottom transport layer and between the recombination and the top transport layer are crucial for guaranteeing good ambipolar field-effect electrical characteristics. Moreover interfaces between the bottom transport and the recombination layer and between the recombination and the top transport layer should provide the favourable conditions for the charge percolation to happen in the recombination layer and form excitons. Organic light emitting transistor based on the tri-layer approach with external quantum efficiency out-performing the OLED state of the art has been recently demonstrated [Capelli et al., Nat. Mater. 9 (2010) 496-503] widening the scientific and technological interest in this field of research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Organic electronics is an emerging field with a vast number of applications having high potential for commercial success. Although an enormous progress has been made in this research area, many organic electronic applications such as organic opto-electronic devices, organic field effect transistors and organic bioelectronic devices still require further optimization to fulfill the requirements for successful commercialization. The main bottle neck that hinders large scale production of these devices is their performances and stability. The performance of the organic devices largely depends on the charge transport processes occurring at the interfaces of various material that it is composed of. As a result, the key ingredient needed for a successful improvement in the performance and stability of organic electronic devices is an in-depth knowledge of the interfacial interactions and the charge transport phenomena taking place at different interfaces. The aim of this thesis is to address the role of the various interfaces between different material in determining the charge transport properties of organic devices. In this framework, I chose an Organic Field Effect Transistor (OFET) as a model system to carry out this study as it An OFET offers various interfaces that can be investigated as it is made up of stacked layers of various material. In order to probe the intrinsic properties that governs the charge transport, we have to be able to carry out thorough investigation of the interactions taking place down at the accumulation layer thickness. However, since organic materials are highly instable in ambient conditions, it becomes quite impossible to investigate the intrinsic properties of the material without the influence of extrinsic factors like air, moisture and light. For this reason, I have employed a technique called the in situ real-time electrical characterization technique which enables electrical characterization of the OFET during the growth of the semiconductor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Organic Functionalisation, Doping and Characterisation of Semiconductor Surfaces for Future CMOS Device Applications Semiconductor materials have long been the driving force for the advancement of technology since their inception in the mid-20th century. Traditionally, micro-electronic devices based upon these materials have scaled down in size and doubled in transistor density in accordance with the well-known Moore’s law, enabling consumer products with outstanding computational power at lower costs and with smaller footprints. According to the International Technology Roadmap for Semiconductors (ITRS), the scaling of metal-oxide-semiconductor field-effect transistors (MOSFETs) is proceeding at a rapid pace and will reach sub-10 nm dimensions in the coming years. This scaling presents many challenges, not only in terms of metrology but also in terms of the material preparation especially with respect to doping, leading to the moniker “More-than-Moore”. Current transistor technologies are based on the use of semiconductor junctions formed by the introduction of dopant atoms into the material using various methodologies and at device sizes below 10 nm, high concentration gradients become a necessity. Doping, the controlled and purposeful addition of impurities to a semiconductor, is one of the most important steps in the material preparation with uniform and confined doping to form ultra-shallow junctions at source and drain extension regions being one of the key enablers for the continued scaling of devices. Monolayer doping has shown promise to satisfy the need to conformally dope at such small feature sizes. Monolayer doping (MLD) has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from the traditional silicon and germanium devices to emerging replacement materials such as III-V compounds This thesis aims to investigate the potential of monolayer doping to complement or replace conventional doping technologies currently in use in CMOS fabrication facilities across the world.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we synthesize large-area thin films of a conjugated, imine-based, two-dimensional covalent organic framework at the solution/air interface. Thicknesses between ∼2-200 nm are achieved. Films can be transferred to any desired substrate by lifting from underneath, enabling their use as the semiconducting active layer in field-effect transistors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the reaction of semiconductor microrods of phase I copper 7,7,8,8-tetracyanoquinodimethane (CuTCNQ) with KAuBr4 in acetonitrile is reported. It was found that the reaction is redox in nature and proceeds via a galvanic replacement mechanism in which the surface of CuTCNQ is replaced with metallic gold nanoparticles. Given the slight solubility of CuTCNQ in acetonitrile, two competing reactions, namely CuTCNQ dissolution and the redox reaction with KAuBr4, were found to operate in parallel. An increase in the surface coverage of CuTCNQ microrods with gold nanoparticles occurred with an increased KAuBr4 concentration in acetonitrile, which also inhibited CuTCNQ dissolution. The reaction progress with time was monitored using UV−visible, FT-IR, and Raman spectroscopy as well as XRD and EDX analysis, and SEM imaging. The CuTCNQ/Au nanocomposites were investigated for their photocatalytic properties, wherein the destruction of Congo red, an organic dye, by simulated solar light was found dependent on the surface coverage of gold nanoparticles on the CuTCNQ microrods. This method of decorating CuTCNQ may open the possibility of modifying this and other metal-TCNQ charge transfer complexes with a host of other metals which may have significant applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is focus on developing new photocatalysts for synthesis of fine organic chemicals on supported nanostructures. These photocatalysts can facilitate reactions by using visible light, moderate temperature and atmospheric pressure which is suitable for a sustainable, green and eco-friendly modern chemical industry. Both Semiconductor Photocatalyst and Noble Metal Photocatalysts are designed to facilitate the homocouplings reaction of imine generation by amines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on charge transport and density of trap states (trap DOS) in ambipolar diketopyrrolopyrrole-benzothiadiazole copolymer thin-film transistors. This semiconductor possesses high electron and hole field-effect mobilities of up to 0.6 cm 2/V-s. Temperature and gate-bias dependent field-effect mobility measurements are employed to extract the activation energies and trap DOS to understand its unique high mobility balanced ambipolar charge transport properties. The symmetry between the electron and hole transport characteristics, parameters and activation energies is remarkable. We believe that our work is the first charge transport study of an ambipolar organic/polymer based field-effect transistor with room temperature mobility higher than 0.1 cm 2/V-s in both electrons and holes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diketopyrrolopyrrole (DPP)-based organic semiconductors EH-DPP-TFP and EH-DPP-TFPV with branched ethyl-hexyl solubilizing alkyl chains and end capped with trifluoromethyl phenyl groups were designed and synthesized via Suzuki coupling. These compounds show intense absorptions up to 700 nm, and thin film-forming characteristics that sensitively depend on the solvent and coating conditions. Both materials have been used as electron donors in bulk heterojunction and bilayer organic photovoltaic (OPV) devices with fullerenes as acceptors and their performance has been studied in detail. The best power conversion efficiency of 3.3% under AM1.5G illumination (100 mW cm -2) was achieved for bilayer solar cells when EH-DPP-TFPV was used with C 60, after a thermal annealing step to induce dye aggregation and interdiffusion of C 60 with the donor material. To date, this is one of the highest efficiencies reported for simple bilayer OPV devices.