942 resultados para Optimal performance
Resumo:
This paper examines the relationship between multinationality and firm performance. The analysis is based on a sample of over 400 UK multinationals, and encompasses both service sector and manufacturing sector multinationals. This paper confirms the non-linear relationship between performance and multinationality that is reported elsewhere in the literature, but offers further analysis of this relationship. Specifically, by correcting for endogeneity in the investment decision, and for shocks in productivity across countries, the paper demonstrates that the returns to multinationality are greater than those that have been reported elsewhere, and persist to higher degrees of international diversification.
Resumo:
Children fromdevelopedanddevelopingcountriesdifferintheirbodysizeandshapedueto markeddifferencesacrosstheirlifehistorycausedbysocial,economicandculturaldifferenceswhicharealsolinkedtotheirmotorperformance(MP).Weusedallometricmodelsto identifysize/shapecharacteristicsassociatedwithMPtestsbetweenBrazilianandPeruvianschoolchildren.Atotalof4,560subjects,2,385girlsand2,175boysaged9–15years werestudied.Heightandweightweremeasured;biological maturation wasestimated with thematurityoffsettechnique;MPmeasuresincludedthe12minuterun(12MR),handgrip strength(HG),standinglongjump(SLJ)andtheshuttlerunspeed(SR)tests;physicalactivity(PA)wasassessedusingtheBaeckequestionnaire.Amultiplicativeallometricmodel wasadoptedtoadjustforbodysizedifferencesacrosscountries.Reciprocalponderalindex (RPI)wasfoundtobethemostsuitablebodyshapeindicatorassociatedwiththe12MR, SLJ,HGandSRperformance.Apositivematurationoffset parameterwasalsoassociated withabetterperformanceinSLJ,HGandSRtests.Sexdifferenceswerefoundinallmotor tests.BrazilianyouthshowedbetterscoresinMPthantheirPeruvianpeers,evenwhen controlling fortheirbodysizedifferencesThecurrentstudyidentifiedthekeybodysize associatedwithfourbodymass-dependentMPtests.Biological maturationandPAwere associatedwithstrengthandmotorperformance.Sexdifferenceswerefoundinallmotor tests,aswellasacrosscountriesfavoringBrazilianchildrenevenwhenaccountingfortheir bodysize/shapedifferences.
Resumo:
Children fromdevelopedanddevelopingcountriesdifferintheirbodysizeandshapedueto markeddifferencesacrosstheirlifehistorycausedbysocial,economicandculturaldifferenceswhicharealsolinkedtotheirmotorperformance(MP).Weusedallometricmodelsto identifysize/shapecharacteristicsassociatedwithMPtestsbetweenBrazilianandPeruvianschoolchildren.Atotalof4,560subjects,2,385girlsand2,175boysaged9–15years werestudied.Heightandweightweremeasured;biological maturation wasestimated with thematurityoffsettechnique;MPmeasuresincludedthe12minuterun(12MR),handgrip strength(HG),standinglongjump(SLJ)andtheshuttlerunspeed(SR)tests;physicalactivity(PA)wasassessedusingtheBaeckequestionnaire.Amultiplicativeallometricmodel wasadoptedtoadjustforbodysizedifferencesacrosscountries.Reciprocalponderalindex (RPI)wasfoundtobethemostsuitablebodyshapeindicatorassociatedwiththe12MR, SLJ,HGandSRperformance.Apositivematurationoffset parameterwasalsoassociated withabetterperformanceinSLJ,HGandSRtests.Sexdifferenceswerefoundinallmotor tests.BrazilianyouthshowedbetterscoresinMPthantheirPeruvianpeers,evenwhen controlling fortheirbodysizedifferencesThecurrentstudyidentifiedthekeybodysize associatedwithfourbodymass-dependentMPtests.Biological maturationandPAwere associatedwithstrengthandmotorperformance.Sexdifferenceswerefoundinallmotor tests,aswellasacrosscountriesfavoringBrazilianchildrenevenwhenaccountingfortheir bodysize/shapedifferences.
Resumo:
This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates the validity of a simplified equivalent reservoir representation of a multi-reservoir hydroelectric system for modelling its optimal operation for power maximization. This simplification, proposed by Arvanitidis and Rosing (IEEE Trans Power Appar Syst 89(2):319-325, 1970), imputes a potential energy equivalent reservoir with energy inflows and outflows. The hydroelectric system is also modelled for power maximization considering individual reservoir characteristics without simplifications. Both optimization models employed MINOS package for solution of the non-linear programming problems. A comparison between total optimized power generation over the planning horizon by the two methods shows that the equivalent reservoir is capable of producing satisfactory power estimates with less than 6% underestimation. The generation and total reservoir storage trajectories along the planning horizon obtained by equivalent reservoir method, however, presented significant discrepancies as compared to those found in the detailed modelling. This study is motivated by the fact that Brazilian generation system operations are based on the equivalent reservoir method as part of the power dispatch procedures. The potential energy equivalent reservoir is an alternative which eliminates problems with the dimensionality of state variables in a dynamic programming model.
Resumo:
This work explores the design of piezoelectric transducers based on functional material gradation, here named functionally graded piezoelectric transducer (FGPT). Depending on the applications, FGPTs must achieve several goals, which are essentially related to the transducer resonance frequency, vibration modes, and excitation strength at specific resonance frequencies. Several approaches can be used to achieve these goals; however, this work focuses on finding the optimal material gradation of FGPTs by means of topology optimization. Three objective functions are proposed: (i) to obtain the FGPT optimal material gradation for maximizing specified resonance frequencies; (ii) to design piezoelectric resonators, thus, the optimal material gradation is found for achieving desirable eigenvalues and eigenmodes; and (iii) to find the optimal material distribution of FGPTs, which maximizes specified excitation strength. To track the desirable vibration mode, a mode-tracking method utilizing the `modal assurance criterion` is applied. The continuous change of piezoelectric, dielectric, and elastic properties is achieved by using the graded finite element concept. The optimization algorithm is constructed based on sequential linear programming, and the concept of continuum approximation of material distribution. To illustrate the method, 2D FGPTs are designed for each objective function. In addition, the FGPT performance is compared with the non-FGPT one.
Resumo:
The computational design of a composite where the properties of its constituents change gradually within a unit cell can be successfully achieved by means of a material design method that combines topology optimization with homogenization. This is an iterative numerical method, which leads to changes in the composite material unit cell until desired properties (or performance) are obtained. Such method has been applied to several types of materials in the last few years. In this work, the objective is to extend the material design method to obtain functionally graded material architectures, i.e. materials that are graded at the local level (e.g. microstructural level). Consistent with this goal, a continuum distribution of the design variable inside the finite element domain is considered to represent a fully continuous material variation during the design process. Thus the topology optimization naturally leads to a smoothly graded material system. To illustrate the theoretical and numerical approaches, numerical examples are provided. The homogenization method is verified by considering one-dimensional material gradation profiles for which analytical solutions for the effective elastic properties are available. The verification of the homogenization method is extended to two dimensions considering a trigonometric material gradation, and a material variation with discontinuous derivatives. These are also used as benchmark examples to verify the optimization method for functionally graded material cell design. Finally the influence of material gradation on extreme materials is investigated, which includes materials with near-zero shear modulus, and materials with negative Poisson`s ratio.
Resumo:
The thermal performance of a cooling tower and its cooling water system is critical for industrial plants, and small deviations from the design conditions may cause severe instability in the operation and economics of the process. External disturbances such as variation in the thermal demand of the process or oscillations in atmospheric conditions may be suppressed in multiple ways. Nevertheless, such alternatives are hardly ever implemented in the industrial operation due to the poor coordination between the utility and process sectors. The complexity of the operation increases because of the strong interaction among the process variables. In the present work, an integrated model for the minimization of the operating costs of a cooling water system is developed. The system is composed of a cooling tower as well as a network of heat exchangers. After the model is verified, several cases are studied with the objective of determining the optimal operation. It is observed that the most important operational resources to mitigate disturbances in the thermal demand of the process are, in this order: the increase in recycle water flow rate, the increase in air flow rate and finally the forced removal of a portion of the water flow rate that enters the cooling tower with the corresponding make-up flow rate. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this article, we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noise under three kinds of performance criterions related to the final value of the expectation and variance of the output. In the first problem it is desired to minimise the final variance of the output subject to a restriction on its final expectation, in the second one it is desired to maximise the final expectation of the output subject to a restriction on its final variance, and in the third one it is considered a performance criterion composed by a linear combination of the final variance and expectation of the output of the system. We present explicit sufficient conditions for the existence of an optimal control strategy for these problems, generalising previous results in the literature. We conclude this article presenting a numerical example of an asset liabilities management model for pension funds with regime switching.
Resumo:
A simple and rapid method, which involves liquid-phase microextraction (LPME) followed by HPLC analysis using Chiralpak AD column and UV detection, was developed for the enantioselective determination of mefloquine in plasma samples. Several factors that influence the efficiency of three-phase LPME were investigated and optimized. Under the optimal extraction conditions, the mean recoveries were 33.2 and 35.0% for (-)-(SR-)-mefloquine and (+)-(RS)-mefloquine, respectively. The method was linear over 50-1500 ng/ml range. Within-day and between-day assay precision and accuracy were below 15% for both enantiomers at concentrations of 150, 600 and 1200 ng/ml. Furthermore, no racemization or degradation were seen with the method described. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
While the physiological adaptations that occur following endurance training in previously sedentary and recreationally active individuals are relatively well understood, the adaptations to training in already highly trained endurance athletes remain unclear. While significant improvements in endurance performance and corresponding physiological markers are evident following submaximal endurance training in sedentary and recreationally active groups, an additional increase in submaximal training (i.e. volume) in highly trained individuals does not appear to further enhance either endurance performance or associated physiological variables [e.g. peak oxygen uptake (V-dot O2peak), oxidative enzyme activity]. It seems that, for athletes who are already trained, improvements in endurance performance can be achieved only through high-intensity interval training (HIT). The limited research which has examined changes in muscle enzyme activity in highly trained athletes, following HIT, has revealed no change in oxidative or glycolytic enzyme activity, despite significant improvements in endurance performance (p < 0.05). Instead, an increase in skeletal muscle buffering capacity may be one mechanism responsible for an improvement in endurance performance. Changes in plasma volume, stroke volume, as well as muscle cation pumps, myoglobin, capillary density and fibre type characteristics have yet to be investigated in response to HIT with the highly trained athlete. Information relating to HIT programme optimisation in endurance athletes is also very sparse. Preliminary work using the velocity at which V-dot O2max is achieved (Vmax) as the interval intensity, and fractions (50 to 75%) of the time to exhaustion at Vmax (Tmax) as the interval duration has been successful in eliciting improvements in performance in long-distance runners. However, Vmax and Tmax have not been used with cyclists. Instead, HIT programme optimisation research in cyclists has revealed that repeated supramaximal sprinting may be equally effective as more traditional HIT programmes for eliciting improvements in endurance performance. Further examination of the biochemical and physiological adaptations which accompany different HIT programmes, as well as investigation into the optimal HIT programme for eliciting performance enhancements in highly trained athletes is required.
Resumo:
We discuss the expectation propagation (EP) algorithm for approximate Bayesian inference using a factorizing posterior approximation. For neural network models, we use a central limit theorem argument to make EP tractable when the number of parameters is large. For two types of models, we show that EP can achieve optimal generalization performance when data are drawn from a simple distribution.