993 resultados para Optimal Scaling
Resumo:
In this paper, we are concerned with the practical implementation of time optimal numerical techniques on underwater vehicles. We briefly introduce the model of underwater vehicle we consider and present the parameters for the test bed ODIN (Omni-Directional Intelligent Navigator). Then we explain the numerical method used to obtain time optimal trajectories with a structure suitable for the implementation. We follow this with a discussion on the modifications to be made considering the characteristics of ODIN. Finally, we illustrate our computations with some experimental results.
Resumo:
This paper examines the ground-water flow problem associated with the injection and recovery of certain corrosive fluids into mineral bearing rock. The aim is to dissolve the minerals in situ, and then recover them in solution. In general, it is not possible to recover all the injected fluid, which is of concern economically and environmentally. However, a new strategy is proposed here, that allows all the leaching fluid to be recovered. A mathematical model of the situation is solved approximately using an asymptotic solution, and exactly using a boundary integral approach. Solutions are shown for two-dimensional flow, which is of some practical interest as it is achievable in old mine tunnels, for example.
Resumo:
Optimal scheduling of voltage regulators (VRs), fixed and switched capacitors and voltage on customer side of transformer (VCT) along with the optimal allocaton of VRs and capacitors are performed using a hybrid optimisation method based on discrete particle swarm optimisation and genetic algorithm. Direct optimisation of the tap position is not appropriate since in general the high voltage (HV) side voltage is not known. Therefore, the tap setting can be determined give the optimal VCT once the HV side voltage is known. The objective function is composed of the distribution line loss cost, the peak power loss cost and capacitors' and VRs' capital, operation and maintenance costs. The constraints are limits on bus voltage and feeder current along with VR taps. The bus voltage should be maintained within the standard level and the feeder current should not exceed the feeder-rated current. The taps are to adjust the output voltage of VRs between 90 and 110% of their input voltages. For validation of the proposed method, the 18-bus IEEE system is used. The results are compared with prior publications to illustrate the benefit of the employed technique. The results also show that the lowest cost planning for voltage profile will be achieved if a combination of capacitors, VRs and VCTs is considered.
Resumo:
Monitoring and assessing environmental health is becoming increasingly important as human activity and climate change place greater pressure on global biodiversity. Acoustic sensors provide the ability to collect data passively, objectively and continuously across large areas for extended periods of time. While these factors make acoustic sensors attractive as autonomous data collectors, there are significant issues associated with large-scale data manipulation and analysis. We present our current research into techniques for analysing large volumes of acoustic data effectively and efficiently. We provide an overview of a novel online acoustic environmental workbench and discuss a number of approaches to scaling analysis of acoustic data; collaboration, manual, automatic and human-in-the loop analysis.
Resumo:
We study the regret of optimal strategies for online convex optimization games. Using von Neumann's minimax theorem, we show that the optimal regret in this adversarial setting is closely related to the behavior of the empirical minimization algorithm in a stochastic process setting: it is equal to the maximum, over joint distributions of the adversary's action sequence, of the difference between a sum of minimal expected losses and the minimal empirical loss. We show that the optimal regret has a natural geometric interpretation, since it can be viewed as the gap in Jensen's inequality for a concave functional--the minimizer over the player's actions of expected loss--defined on a set of probability distributions. We use this expression to obtain upper and lower bounds on the regret of an optimal strategy for a variety of online learning problems. Our method provides upper bounds without the need to construct a learning algorithm; the lower bounds provide explicit optimal strategies for the adversary. Peter L. Bartlett, Alexander Rakhlin
Resumo:
In this paper, a comprehensive planning methodology is proposed that can minimize the line loss, maximize the reliability and improve the voltage profile in a distribution network. The injected active and reactive power of Distributed Generators (DG) and the installed capacitor sizes at different buses and for different load levels are optimally controlled. The tap setting of HV/MV transformer along with the line and transformer upgrading is also included in the objective function. A hybrid optimization method, called Hybrid Discrete Particle Swarm Optimization (HDPSO), is introduced to solve this nonlinear and discrete optimization problem. The proposed HDPSO approach is a developed version of DPSO in which the diversity of the optimizing variables is increased using the genetic algorithm operators to avoid trapping in local minima. The objective function is composed of the investment cost of DGs, capacitors, distribution lines and HV/MV transformer, the line loss, and the reliability. All of these elements are converted into genuine dollars. Given this, a single-objective optimization method is sufficient. The bus voltage and the line current as constraints are satisfied during the optimization procedure. The IEEE 18-bus test system is modified and employed to evaluate the proposed algorithm. The results illustrate the unavoidable need for optimal control on the DG active and reactive power and capacitors in distribution networks.
Resumo:
This paper considers an aircraft collision avoidance design problem that also incorporates design of the aircraft’s return-to-course flight. This control design problem is formulated as a non-linear optimal-stopping control problem; a formulation that does not require a prior knowledge of time taken to perform the avoidance and return-to-course manoeuvre. A dynamic programming solution to the avoidance and return-to-course problem is presented, before a Markov chain numerical approximation technique is described. Simulation results are presented that illustrate the proposed collision avoidance and return-to-course flight approach.
Resumo:
In many prediction problems, including those that arise in computer security and computational finance, the process generating the data is best modelled as an adversary with whom the predictor competes. Even decision problems that are not inherently adversarial can be usefully modeled in this way, since the assumptions are sufficiently weak that effective prediction strategies for adversarial settings are very widely applicable.
Resumo:
In many prediction problems, including those that arise in computer security and computational finance, the process generating the data is best modelled as an adversary with whom the predictor competes. Even decision problems that are not inherently adversarial can be usefully modeled in this way, since the assumptions are sufficiently weak that effective prediction strategies for adversarial settings are very widely applicable.
Resumo:
A number of learning problems can be cast as an Online Convex Game: on each round, a learner makes a prediction x from a convex set, the environment plays a loss function f, and the learner’s long-term goal is to minimize regret. Algorithms have been proposed by Zinkevich, when f is assumed to be convex, and Hazan et al., when f is assumed to be strongly convex, that have provably low regret. We consider these two settings and analyze such games from a minimax perspective, proving minimax strategies and lower bounds in each case. These results prove that the existing algorithms are essentially optimal.
Resumo:
A scaling analysis is performed for the transient boundary layer established adjacent to an inclined flat plate following a ramp cooling boundary condition. The imposed wall temperature decreases linearly up to a specific value over a specific time. It is revealed that if the ramp time is sufficiently large then the boundary layer reaches quasi-steady mode before the growth of the temperature is finished. However, if the ramp time is shorter then the steady state of the boundary layer may be reached after the growth of the temperature is completed. In this case, the ultimate steady state is the same as if the start up had been instantaneous. Note that the cold boundary layer adjacent to the plate is potentially unstable to Rayleigh-Bénard instability if the Rayleigh number exceeds a certain critical value for this cooling case. The onset of instability may set in at different stages of the boundary layer development. A proper identification of the time when the instability may set in is discussed. A numerical verification of the time for the onset of instability is presented in this study. Different flow regimes based on the stability of the boundary layer have also been discussed with numerical results.
Resumo:
The natural convection boundary layer adjacent to an inclined plate subject to sudden cooling boundary condition has been studied. It is found that the cold boundary layer adjacent to the plate is potentially unstable to Rayleigh-Bénard instability if the Rayleigh number exceeds a certain critical value. A scaling relation for the onset of instability of the boundary layer is achieved. The scaling relations have been developed by equating important terms of the governing equations based on the development of the boundary layer with time. The flow adjacent to the plate can be classified broadly into a conductive, a stable convective or an unstable convective regime determined by the Rayleigh number. Proper scales have been established to quantify the flow properties in each of these flow regimes. An appropriate identification of the time when the instability may set in is discussed. A numerical verification of the time for the onset of instability is also presented in this study. Different flow regimes based on the stability of the boundary layer have been discussed with numerical results.