969 resultados para Ocean dynamics


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Calcification and growth of crustose coralline algae (CCA) are affected by elevated seawater pCO2 and associated changes in carbonate chemistry. However, the effects of ocean acidification (OA) on population and community-level responses of CCA have barely been investigated. We explored changes in community structure and population dynamics (size structure and reproduction) of CCA in response to OA. Recruited from an experimental flow-through system, CCA settled onto the walls of plastic aquaria and developed under exposure to one of three pCO2 treatments (control [present day, 389±6 ppm CO2], medium [753±11 ppm], and high [1267±19 ppm]). Elevated pCO2 reduced total CCA abundance and affected community structure, in particular the density of the dominant species Pneophyllum sp. and Porolithon onkodes. Meanwhile, the relative abundance of P. onkodes declined from 24% under control CO2 to 8.3% in high CO2 (65% change), while the relative abundance of Pneophyllum sp. remained constant. Population size structure of P. onkodes differed significantly across treatments, with fewer larger individuals under high CO2. In contrast, the population size structure and number of reproductive structures (conceptacles) per crust of Pneophyllum sp. was similar across treatments. The difference in the magnitude of the response of species abundance and population size structure between species may have the potential to induce species composition changes in the future. These results demonstrate that the impacts of OA on key coral reef builders go beyond declines in calcification and growth, and suggest important changes to aspects of population dynamics and community ecology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent evolution experiments have revealed that marine phytoplankton may adapt to global change, for example to ocean warming or acidification. Long-term adaptation to novel environments is a dynamic process and phenotypic change can take place thousands of generations after exposure to novel conditions. Using the longest evolution experiment performed in any marine species to date (4 yrs, = 2100 generations), we show that in the coccolithophore Emiliania huxleyi, long-term adaptation to ocean acidification is complex and initial phenotypic responses may revert for important traits. While fitness increased continuously, calcification was restored within the first 500 generations but later reduced in response to selection, enhancing physiological declines of calcification in response to ocean acidification. Interestingly, calcification was not constitutively reduced but revealed rates similar to control treatments when transferred back to present-day CO2 conditions. Growth rate increased with time in controls and adaptation treatments, although the effect size of adaptation assessed through reciprocal assay experiments varied. Several trait changes were associated with selection for higher cell division rates under laboratory conditions, such as reduced cell size and lower particulate organic carbon content per cell. Our results show that phytoplankton may evolve phenotypic plasticity that can affect biogeochemically important traits, such as calcification, in an unforeseen way under future ocean conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tagged phosphorus was used to measure principal indices of mineral phosphorus variations in the euphotic zone of the East Pacific, i.e. total rate of uptake of phosphate phosphorus by microplankton (A_t), fraction consumed by phytoplankton (A_p/A_t), and turnover time (T). A_t reached its greatest values (150-280 ng/l/hour) in the upwelling zone of the Peru traverse, where development of phytoplankton was induced by upwelling. In other areas of this traverse values were 40-80 ng/l/hour in surface layers. In less productive waters on two other profiles (off Central America and California), values were lower, between 20 and 40 ng/l. On the vertical profile maxima of A_t were found at the upper boundary of the thermocline. Turnover time of PO4 phosphorus (T) in zones of phytoplankton abundance was very short, between 1.5 and 4 days. At most other stations it was 10-40 days, increasing to 100-200 days or longer at the lower boundary of the euphotic zone. In areas of phytoplankton abundance it accounted for 60-80% of total uptake of PO4 phosphorus. But in zones of elevated bacterial abundance, A_p/A_t fell to 20-40%. Data indicating lack of correlation between PO4 phosphorus and productivity are presented. It is emphasized that the above measures of PO4 phosphorus dynamics can be used for obtaining measures of functional condition and successional phase of marine plankton communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This contribution describes two mass movement deposits (total volume ~0.5 km3) identified in seven marine cores located 8 to 15 km offshore southern Montserrat, West Indies. The deposits were emplaced in the last 35 ka and have not previously been recognised in either the subaerial or distal submarine records. Age constraints, provided by radiocarbon dating, show that an explosive volcanic eruption occurred at ca 8–12 ka, emplacing a primary eruption-related deposit that overlies a large (~0.3 km3) reworked bioclastic and volcaniclastic flow deposit, formed from a shelf collapse between 8 and 35 ka. The origin of these deposits has been deduced through the correlation of marine sediment cores, component analysis and geochemical analysis. The 8–12 ka primary volcanic deposit was likely derived from a highly-erosive pyroclastic flow from the Soufrière Hills volcano that entered the ocean and mixed with the water column forming a water-supported density current. Previous investigations of the eruption record suggested that there was a hiatus in activity at the Soufrière Hills volcano between 16 and 6 ka. The ca 8–12 ka eruptive episode identified here shows that this hiatus was shorter than previously hypothesised, and thus highlights the importance of obtaining an accurate and completemarine record of events offshore from volcanic islands and incorporating such data into eruption history reconstructions. Comparisons with the submarine deposit characteristics of the 2003 dome collapse also suggests that the ~8–12 ka eruptive episode was more explosive than eruptions from the current eruptive episode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff int the Bay of Bengal due to higher rainfall over the Himalayan-Tibetan regions which drain into the Bay of Bengal through Ganga-Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is to strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dengue dynamics are driven by complex interactions between hosts, vectors and viruses that are influenced by environmental and climatic factors. Several studies examined the role of El Niño Southern Oscillation (ENSO) in dengue incidence. However, the role of Indian Ocean Dipole (IOD), a coupled ocean atmosphere phenomenon in the Indian Ocean, which controls the summer monsoon rainfall in the Indian region, remains unexplored. Here, we examined the effects of ENSO and IOD on dengue incidence in Bangladesh. According to the wavelet coherence analysis, there was a very weak association between ENSO, IOD and dengue incidence, but a highly significant coherence between dengue incidence and local climate variables (temperature and rainfall). However, a distributed lag nonlinear model (DLNM) revealed that the association between dengue incidence and ENSO or IOD were comparatively stronger after adjustment for local climate variables, seasonality and trend. The estimated effects were nonlinear for both ENSO and IOD with higher relative risks at higher ENSO and IOD. The weak association between ENSO, IOD and dengue incidence might be driven by the stronger effects of local climate variables such as temperature and rainfall. Further research is required to disentangle these effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Ocean General Circulation Model of the Indian Ocean with high horizontal (0.25 degrees x 0.25 degrees) and vertical (40 levels) resolutions is used to study the dynamics and thermodynamics of the Arabian Sea mini warm pool (ASMWP), the warmest region in the northern Indian Ocean during January-April. The model simulates the seasonal cycle of temperature, salinity and currents as well as the winter time temperature inversions in the southeastern Arabian Sea (SEAS) quite realistically with climatological forcing. An experiment which maintained uniform salinity of 35 psu over the entire model domain reproduces the ASMWP similar to the control run with realistic salinity and this is contrary to the existing theories that stratification caused by the intrusion of low-salinity water from the Bay of Bengal into the SEAS is crucial for the formation of ASMWP. The contribution from temperature inversions to the warming of the SEAS is found to be negligible. Experiments with modified atmospheric forcing over the SEAS show that the low latent heat loss over the SEAS compared to the surroundings, resulting from the low winds due to the orographic effect of Western Ghats, plays an important role in setting up the sea surface temperature (SST) distribution over the SEAS during November March. During March-May, the SEAS responds quickly to the air-sea fluxes and the peak SST during April-May is independent of the SST evolution during previous months. The SEAS behaves as a low wind, heat-dominated regime during November-May and, therefore, the formation and maintenance of the ASMWP is not dependent on the near surface stratification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decision to patent a technology is a difficult one to make for the top management of any organization. The expected value that the patent might deliver in the market is an important factor that impacts this judgement. Earlier researchers have suggested that patent prices are better indicators of value of a patent and that auction prices are the best way of determining value. However, the lack of public data on pricing has prevented research on understanding the dynamics of patent pricing. Our paper uses singleton patent auction price data of Ocean Tomo LLC to study the prices of patents. We describe price characteristics of these patents. The price of these patents was correlated with their age, and a significant correlation was found. A price - age matrix was developed and we describe the price characteristics of patents using four quadrants of the matrix, namely young and old patents with low and high prices. We also found that patents owned by small firms get transacted more often and inventor owned patents attracted a better price than assignee owned patents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on studying the relationship between patent latent variables and patent price. From the existing literature, seven patent latent variables, namely age, generality, originality, foreign filings, technology field, forward citations, and backward citations were identified as having an influence on patent value. We used Ocean Tomo's patent auction price data in this study. We transformed the price and the predictor variables (excluding the dummy variables) to its logarithmic value. The OLS estimates revealed that forward citations and foreign filings were positively correlated to price. Both the variables jointly explained 14.79% of the variance in patent pricing. We did not find sufficient evidence to come up with any definite conclusions on the relationship between price and the variables such as age, technology field, generality, backward citations and originality. The Heckman two-stage sample selection model was used to test for selection bias. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against similar to 0.25 for wind stress) and in observations (0.8 regression coefficient); similar to 60% of the heat flux variation is due do shortwave radiation and similar to 40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our similar to 100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region, but does not contribute to large-scale intraseasonal SST variability due to its small spatial scale and random phase relation to the active-break monsoon cycle. The effect of oceanic eddies; however, remains to be explored at a higher spatial resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, business practitioners are seen valuing patents on the basis of the market price that the patent can attract. Researchers have also looked into various patent latent variables and firm variables that influence the price of a patent. Forward citations of a patent are shown to play a role in determining price. Using patent auction price data (of Ocean Tomo now ICAP patent brokerage), we delve deeper into of the role of forward citations. The successfully sold 167 singleton patents form the sample of our study. We found that, it is mainly the right tail of the citation distribution that explains the high prices of the patents falling on the right tail of the price distribution. There is consistency in the literature on the positive correlation between patent prices and forward citations. In this paper, we go deeper to understand this linear relationship through case studies. Case studies of patents with high and low citations are described in this paper to understand why some patents attracted high prices. We look into the role of additional patent latent variables like age, technology discipline, class and breadth of the patent in influencing citations that a patent receives.