982 resultados para OXIDE-FILMS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work proposes the application of fractal descriptors to the analysis of nanoscale materials under different experimental conditions. We obtain descriptors for images from the sample applying a multiscale transform to the calculation of fractal dimension of a surface map of such image. Particularly, we have used the Bouligand-Minkowski fractal dimension. We applied these descriptors to discriminate between two titanium oxide films prepared under different experimental conditions. Results demonstrate the discrimination power of proposed descriptors in such kind of application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent research suggest that the iron-rich intermetallic phases, such as alpha-FeAl15(Fe,Mn)(3)Si-2 and beta-Fe Al5FeSi, nucleate on oxide films entrained in aluminum casting alloys. This is evidenced by the presence of crack-like defects within these iron-rich intermetallics. In an attempt to verify the role of oxides in nucleating iron-rich intermetallics, experiments have been conducted under conditions where in-situ entrained oxide films and deliberately added oxide particles were present. Iron-rich intermetallics are observed to be associated with the oxides in the final microstructure, and crack-like defects are often observed in the beta-Fe plates. The physical association of the Fe-rich intermetallic phases with these solid oxides, either formed in situ or added, is in accordance with the mechanism suggesting that iron-rich intermetallics nucleate upon the wetted sides of double oxide films.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pin on disc wear machine has been used to study the oxidational wear of low alloy steel in a series of experiments which were carried out under dry wear sliding conditions at range of loads from 11.28 to 49.05 N and three sliding speeds of 2 m/s, 3.5 m/s and 5 m/s, in atmosphere of air, Ar, CO2, 100% O2, 20% O2-80% Ar and 2% O2-98% Ar. Also, the experiments were conducted to study frictional force, surface and contact temperatures and surface parameters of the wearing pins. The wear debris was examined using x-ray diffraction technique for the identification of compounds produced by the wear process. Scanning electron microscopy was employed to study the topographical features of worn pins and to measure the thickness of the oxide films. Microhardness tests were carried out to investigate the influence of the sub-surface microhardness in tribological conditions. Under all loads, speeds and atmospheres parabolic oxidation growth was observed on worn surfaces, although such growth is dependent on the concentration of oxygen in the atmospheres employed. These atmospheres are shown to influence wear rate and coefficient of friction with change in applied load. The nature of the atmosphere also has influence on surface and contact temperatures as determined from heat flow analysis. Unlubricated wear debris was found to be a mixture of αFe2O3, Fe3O4 and FeO oxide. A model has been proposed for tribo-oxide growth demonstrating the importance of diffusion rate and oxygen partial pressure, in the oxidation processes and thus in determination of wear rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study is concerned with the mechanisms of growth and wear of protective oxide films formed under various tribological conditions. In the study three different tribological systems are examined in each of which oxidational wear is the dominant equilibrium mode. These are an unlubricated steel on steel system sliding at low and elevated temperatures, a boundary lubricated aluminium bronze on steel system and an unlubricated reciprocating sliding 9% Cr steel system operated at elevated temperature, in an atmosphere of carbon dioxide. The results of mechanical measurements of wear and friction are presented for a range of conditions of load, speed and temper.ature for the systems, together with the results of extensive examinations of the surfaces and sub­ surfaces by various physical methods of analysis. The major part of the thesis, however, is devoted to the development and application of surface models and theoretical quantative expressions in order to explain the observed oxidational wear phenomena. In this work, the mechanisms of formation of load bearing ox ide plateaux are described and are found to be dependent on system geometry and environment. The relative importance of ''in contact" and "out of contact" oxidation is identified together with growth rate constants appropriate to the two situations. Hypotheses are presented to explain the mechanisms of removal of plateaux to form wear debris. The latter hypotheses include the effects of cyclic stressing and dislocation accumulation, together with effects associated with the kinetics of growth and physical properties of the various oxides. The proposed surf ace mode1s have led to the develop­ ment of quantitative expressions for contact temperature, unlubricated wear rates, boundary lubricated wear rates and the wear of rna ter ial during the transition from severe to mild wear. In general theoretical predictions from these expressions are in very good agreement with experimental values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bearings in the air motors of modern jet aircraft engines must operate dry in hostile conditions at temperatures up to 500° C, where the thrust races in the actuators operate at temperatures up to 300° C. One of the few metallurgical combinations which can function efficiently under these conditions is martensitic stainless steel on tungsten carbide. The work described was initiated to isolate the wear mechanisms of two such steels in contact with tungsten carbide at temperatures up to 500° C. Experiments were carried out on angular contact bearings similar to these used in service, where both rolling and sliding is present and also for pure sliding conditions using a pin-on-disc apparatus. Wear measurements of the bearings were obtained with wear rates, friction and surface temperatures from the pin-on-disc machine for a series of loads and speeds. Extensive X-ray diffraction analysis was carried out on the wear debris, with also S.E.M. analysis and hardness tests on the worn surfaces along with profilometry measurements of the disc. The oxidational parameters of the steel were obtained from measurements of oxide growth rates by ellipsometry. Three distinct mechanisms of wear were established and the latter two were found to be present in both configurations. These involve an oxidational-abrasive mechanism at loads below 40 N with pin surface temperatures up to about 300 °C, with the mechanism changing to severe wear for higher loads. As the temperature increases a third wear mechanism appears due to transfer of relatively soft oxide films to the steel surface reducing the wear rate. Theoretical K factors were derived and compared with experimental values which were found to be in good agreement for the severe wear mechanism. The pin-on-disc experiments may be useful as a screening test for material selection, without the considerable cost of producing the angular contact bearings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrathin Fe oxide films of various thicknesses prepared by post-growth oxidation on GaAs(100) surface have been investigated with X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and X-ray magnetic circular dichroism (XMCD). The XPS confirms that the surfaces of the oxide are Fe3O4 rather than Fe2O3. XAS and XMCD measurements indicate the presence of insulating Fe divalent oxide phases (FeO) beneath the surface Fe3O4 layer with the sample thickness above 4 nm. This FeO might act as a barrier for the spin injection into the GaAs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The anodic behavior of InP in 1 mol dm-3 KOH was investigated and compared with its behavior at higher concentrations of KOH. At concentrations of 2 mol dm-3 KOH or greater, selective etching of InP occurs leading to thick porous InP layers near the surface of the sustrate. In contrast, in 1 mol dm-3 KOH, no such porous layers are formed but a thin surface film is formed at potentials in the range 0.6 V to 1.3 V. The thickness of this film was determined by spectroscopic ellipsometry as a function of the upper potential and the measured film thickness corresponds to the charge passed up to a potential of 1.0 V. Anodization to potentials above 1.5 V in 1 mol dm- 3 KOH results in the growth of thick, porous oxide films (~ 1.2 µm). These films are observed to crack, ex-situ, due to shrinkage after drying in ambient air. Comparisons between the charge density and film thickness measurements indicate a porosity of approximately 77% for such films.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrical properties of polycrystalline gas sensors are analyzed by d.c. and a.c. measurements. d.c. electrical conductivity values compared with those obtained by admittance spectroscopy methods help to obtain a detailed 'on line' analysis of conductivity-modulated gas sensors. The electrical behaviour of grain boundaries is obtained and a new design of sensors can be achieved by enhancing the activity of surface states in the detecting operation. A Schottky barrier model is used to explain the grain boundary action under the presence of surrounding gases. The height of this barrier is a function of gas concentration due to the trapping of excess charge generated by gas adsorption at the interface. A comparison between this dependence, and a plot of the real and imaginary components of the admittance versus frequency at different gas concentrations, provides information on the different parameters that play a role in the conduction mechanisms. These methods have been applied to the design of a CO sensor based on tin oxide films for domestic purposes, the characteristics of which are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ethanol/water organosolv pulping was used to obtain sugarcane bagasse pulp that was bleached with sodium chlorite. This bleached pulp was used to obtain cellulosic films that were further evaluated by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). A good film formation was observed when temperature of 74 degrees C and baths of distilled water were used, which after FTIR, TGA, and SEM analysis indicated no significant difference between the reaction times. The results showed this to be an interesting and promising process, combining the prerequisites for a more efficient utilization of agro-industrial residues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a model for permeation in oxide coated gas barrier films. The model accounts for diffusion through the amorphous oxide lattice, nano-defects within the lattice, and macro-defects. The presence of nano-defects indicate the oxide layer is more similar to a nano-porous solid (such as zeolite) than silica glass with respect to permeation properties. This explains why the permeability of oxide coated polymers is much greater, and the activation energy of permeation much lower, than values expected for polymers coated with glass. We have used the model to interpret permeability and activation energies measured for the inert gases (He, Ne and Ar) in evaporated SiOx films of varying thickness (13-70 nm) coated on a polymer substrate. Atomic force and scanning electron microscopy were used to study the structure of the oxide layer. Although no defects could be detected by microscopy, the permeation data indicate that macro-defects (>1 nm), nano-defects (0.3-0.4 nm) and the lattice interstices (<0.3 nm) all contribute to the total permeation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chromium oxides, CrxOy, are of great interest due to the wide variety of their technological applications. Among them, CrO2 has been extensively investigated in recent years because it is an attractive compound for use in spintronic heterostructures. However, its synthesis at low temperatures has been a difficult task due to the metastable nature of this oxide. This is indeed essential to ensure interface quality and the ability to coat thermal-sensitive materials such as those envisaged in spintronic devices. Pulsed Laser Deposition (PLD) is a technique that has the potential to meet the requirements stated above. In this work, we describe our efforts to grow chromium oxide thin films by PLD from Cr8O21 targets, using a KrF excimer laser. The as-deposited films were investigated by X-ray diffraction and Rutherford backscattering spectrometry. Structural and chemical composition studies showed that the films consist of a mixture of amorphous chromium oxides exhibiting different stoichiometries depending on the processing parameters, where nanocrystals of mainly Cr2O3 are dispersed. The analyses do not exclude the possibility of co-deposition of Cr2O3 and a low fraction of CrO2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Nanotecnologia e Nanociência

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel NO2 sensor based on (CdO)x(ZnO)1-x mixed-oxide thin films deposited by the spray pyrolysis technique is developed. The sensor response to 3-ppm NO2 is studied in the range 50°C-350°C for three different film compositions. The device is also tested for other harmful gases, such as CO (300 ppm) and CH4 (3000 ppm). The sensor response to these reducing gases is different at different temperatures varying from the response typical for the p-type semiconductor to that typical for the n-type semiconductor. Satisfactory response to NO2 and dynamic behavior at 230°C, as well as low resistivity, are observed for the mixed-oxide film with 30% Cd. The response to interfering gas is poor at working temperature (230°C). On the basis of this study, a possible sensing mechanism is proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Zinc indium tin oxide (ZITO) transparent conductive oxide layers were deposited via radio frequency (RF) magnetron co-sputtering at room temperature. A series of samples with gradually varying zinc content was investigated. The samples were characterized with x-ray and ultraviolet photoemission spectroscopy (XPS, UPS) to determine the electronic structure of the surface. Valence and conduction bands maxima (VBM, CBM), and work function were determined. The experiments indicate that increasing Zn content results in films with a higher defect rate at the surface leading to the formation of a degenerately doped surface layer if the Zn content surpasses 50%. Furthermore, the experiments demonstrate that ZITO is susceptible to ultraviolet light induced work function reduction, similar to what was earlier observed on ITO and TiO2 films.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lanthanum lutetium oxide (LaLuO3) thin films were investigated considering their perspective application for industrial microelectronics. Scanning probe microscopy (SPM) techniques permitted to visualize the surface topography and study the electric properties. This work compared both the material properties (charge behavior for samples of 6 nm and 25 nm width) and the applied SPM modes. Particularly, Kelvin probe force microscopy (KPFM) was applied to characterize local potential difference with high lateral resolution. Measurements showed the difference in morphology, chargeability and charge dissipation time for both samples. The polarity effect was detected for this material for the first time. Lateral spreading of the charged spots indicate the diffusive mechanism to be predominant in charge dissipation. This allowed to estimate the diffusion coefficient and mobility. Using simple electrostatic model it was found that charge is partly leaking into the interface oxide layer.