909 resultados para OTC treatments
Resumo:
Artemia cysts (of GSL, Utah, USA origin) were produced from the modified traditional solar salt works of Bangladesh during winter months through different feeding/fertilization treatments (T1, T2, T3, T4 ) were analyzed to understand the effects of treatments on their fatty acid profile. Palmitic, Linolenic, Eicosapantaenonic and Docohexaenoic acids (mg/g. DW) were found highest for the cysts in T1 (16.0% ±1 .36), T2 (14.7% ±0.47), T3 (4.7% ±0.40) and T4 (0.7% ±0.06) treatments, respectively. High amount of 18:3(n-3) acids in the cysts of all sources proves to be freshwater type of the cysts. The presence of marine type essential fatty acids in the cysts of all sources were found low for 20:5n-3 (3.7-4.7%) and very low for 22:6n-3 (0.09-0.7%). No significant variation was observed for 16:0 acids within the treatments, but for 18:3(n-3) acid, the variation was found highly significant (P= 0.0052) between T2 and T4 treatments. For 20:5(n-3), only variation between T2 and T4 was found insignificant (P=0.1161), but between other treatments, significant variation was observed between T2 and T4 (P=0.0241), T2 and T4 (P=0.0022) and T1 andT4 (P=0.0161). No significant variation was found in other treatments.
Resumo:
In this article, we describe a simple method to reversibly tune the wetting properties of vertically aligned carbon nanotube (CNT) arrays. Here, CNT arrays are defined as densely packed multi-walled carbon nanotubes oriented perpendicular to the growth substrate as a result of a growth process by the standard thermal chemical vapor deposition (CVD) technique.(1,2) These CNT arrays are then exposed to vacuum annealing treatment to make them more hydrophobic or to dry oxidation treatment to render them more hydrophilic. The hydrophobic CNT arrays can be turned hydrophilic by exposing them to dry oxidation treatment, while the hydrophilic CNT arrays can be turned hydrophobic by exposing them to vacuum annealing treatment. Using a combination of both treatments, CNT arrays can be repeatedly switched between hydrophilic and hydrophobic.(2) Therefore, such combination show a very high potential in many industrial and consumer applications, including drug delivery system and high power density supercapacitors.(3-5) The key to vary the wettability of CNT arrays is to control the surface concentration of oxygen adsorbates. Basically oxygen adsorbates can be introduced by exposing the CNT arrays to any oxidation treatment. Here we use dry oxidation treatments, such as oxygen plasma and UV/ozone, to functionalize the surface of CNT with oxygenated functional groups. These oxygenated functional groups allow hydrogen bond between the surface of CNT and water molecules to form, rendering the CNT hydrophilic. To turn them hydrophobic, adsorbed oxygen must be removed from the surface of CNT. Here we employ vacuum annealing treatment to induce oxygen desorption process. CNT arrays with extremely low surface concentration of oxygen adsorbates exhibit a superhydrophobic behavior.
Resumo:
Among diverse types of synthetic materials, arrays of vertically aligned carbon nanotubes have attracted the most attention, mainly because of their exceptional mechanical, electrical, optical, and thermal properties. However, their wetting properties are yet to be understood. In this present study, oxygenated surface functional groups have been identified as a vital factor in controlling the wetting properties of carbon nanotube arrays. The results presented herein indeed show that a combination of ultraviolet/ozone and vacuum pyrolysis treatments can be used to vary the surface concentration of these functional groups such that the carbon nanotube array can be repeatedly switched between hydrophilic and hydrophobic.
Resumo:
Graphene grown by Chemical Vapor Deposition (CVD) on nickel subsrate is oxidized by means of oxygen plasma and UV/Ozone treatments to introduce bandgap opening in graphene. The degree of band gap opening is proportional to the degree of oxidation on the graphene. This result is analyzed and confirmed by Scanning Tunnelling Microscopy/Spectroscopy and Raman spectroscopy measurements. Compared to conventional wet-oxidation methods, oxygen plasma and UV/Ozone treatments do not require harsh chemicals to perform, allow faster oxidation rates, and enable site-specific oxidation. These features make oxygen plasma and UV/Ozone treatments ideal candidates to be implemented in high-throughput fabrication of graphene-based microelectronics. © 2011 Materials Research Society.
Resumo:
Fuel treatment is considered a suitable way to mitigate the hazard related to potential wildfires on a landscape. However, designing an optimal spatial layout of treatment units represents a difficult optimization problem. In fact, budget constraints, the probabilistic nature of fire spread and interactions among the different area units composing the whole treatment, give rise to challenging search spaces on typical landscapes. In this paper we formulate such optimization problem with the objective of minimizing the extension of land characterized by high fire hazard. Then, we propose a computational approach that leads to a spatially-optimized treatment layout exploiting Tabu Search and General-Purpose computing on Graphics Processing Units (GPGPU). Using an application example, we also show that the proposed methodology can provide high-quality design solutions in low computing time. © 2013 The Authors. Published by Elsevier B.V.
Resumo:
为了模拟CO2、O3质量浓度升高的环境条件,OTC-Ⅰ型优化开顶式气室设计实现计算机自动控制气室内的气体质量浓度,其它环境条件接近自然状态,气室内空间适合木本植物生长。对气室性能试验分析结果表明,高质量浓度CO2处理(700μmol/mol)的变异量≤4%,高质量浓度O3处理(80mmol/mol)的变异量≤9%,说明处理气室内CO2与O3质量浓度比较稳定,各重复气室之间控制气体质量浓度无显著差异。本套系统可用于植物对气候变化的响应研究,所得数据相对可靠,是模拟气体环境的较好装置,适用于长期的监测研究。