981 resultados para Numerical calculations


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To study the injection of additional electrons from an external electron gun into the plasma of a Penning ionization gauge (PIG) ion source, a test bench for the external electron-beam enhancement of the PIG (E-PIG) ion source was set up. A source magnet assembly was built to satisfy the request for magnetic field configuration of the E-PIG ion source. Numerical calculations have been done to optimize the magnetic field configuration so as to fit the primary electrons to be fed into the PIG discharge chamber along the spreading magnetic field lines. Many possible methods for improving the performance and stability of the PIG ion source have been used in the E-PIG ion source, including the use of multicrystal LaB6 cathode and optimized axial magnetic field. This article presents a detailed design of the E-PIG ion source. Substantial enhancement of ion charge state is expected to be observed which demonstrates that the E-PIG is a viable alternative to other much more costly and difficult to operate devices for the production of intense ion beams of higher charge state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a previous study, we reported observation of the novel inverted phase (the minority blocks comprising the continuum phase) in kinetically controlled phase separating solution-cast poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer films [Zhang et al. Macromolecules 2000, 33, 9561-7]. In this study, we adopt the same approach to investigate the formation of inverted phase in a series of solution-cast poly(styrene-b-butadiene) (SB) asymmetric diblock copolymers having nearly equal polystyrene (PS) weight fraction (about 30 wt %) but different molecular weights. The microstructure of the solution-cast block copolymer films resulting from different solvent evaporation rates, R, was inspected, from which the kinetically frozen-in phase structures at qualitatively different block copolymer concentrations and correspondingly different effective interaction parameter, chieff, can be deduced. Our result shows that there is a threshold molecular weight or range of molecular weight below which the unusual inverted phase is accessible by controlling the solvent evaporation rate. In comparing the present result with that of our previous study on the SBS triblock copolymer, we find that the formation of the inverted phase has little bearing on the chain architecture. We performed numerical calculations for the free energy of block copolymer cylinders and found that the normal phase is always preferred irrespective of the interaction parameter and molecular weight, which suggests the formation of the inverted phase to have a kinetic origin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dam is the key main works in the construction of water power. The success or failure of the construction of the dam mainly depends on the stability of the dam foundation. The double curvature arch dam-XiaoWan Dam is the highest one among the dams with the same type in the world, and the water thrust acted on it reaches ton, so the rock bearing capacity of dam foundation becomes more important. Because of the high and steep valley-side slope, the large scale of excavation and the complex body type of excavation, it is prominent that the problem of stress release of the rock mass in dam foundation. More great attentions should be paid for the stability and the degraded of rock properties of rock mass induced by the stress release. In this paper, the phenomena of stress release of rock mass in XiaoWan Dam foundation and its mechanisms were analyzed based on the collection of data, the detailed field engineering investigations, measurement of the rock mass and the 2D numerical calculations. The rock mass under the foundation is weak-weathered to intact, the quality of which is good. After excavation of the foundation, the rock mass near the slope surface occurred extend, stretch and stick-slip along original textures till the new fracture surface formed. Then platy structure of the rock mass takes on. The rock mass in the dam foundation occur resilience due to stress release towards free faces with the characteristics of time effect and localized deformation. In-situ measurements show that the rock mass near the surface are degraded. The stress release induced by excavation is a process of the interaction between engineering structures and geologic body. The stress release of rock mass in dam foundation is related to the changed degree of geometrical conditions. The rock near excavation surface failed nearly under uniaxial stresses. The bending-breaking mechanism of plate girder can interpret the failure model of the rock mass with platy structure in dam foundation slope. In essence, the stress release is the change of stress field including the change of directions and magnitudes of stress induced by excavation, which can induce the comedown of the safety margin. In this paper, the inducing conditions of stress release were calculated by numerical analyses. Moreover, from the point of view that the change of stress field, the coefficient of K, i.e. the variable load coefficient was proposed. Then the law of the change of it is interpreted. The distributional characteristics of fracture zone were expressed by the coefficient. The stress release of hard rock has the characteristic of localization. The measuring technique of sound wave can not reflect the small cracks in this kind of rock mass due to stress release. So, the spectral analysis method was proposed. At the same time, the application foreground in engineering of the Stockwell Time-Frequency- Spectrum method was discussed with a view to the limitation of it.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A recent improved version of the semiclassical-quantal approach has been applied to the e(-)-H near-threshold ionization for theta (12) = 180 degrees geometry. It is found, that unlike other sophisticated theoretical methods such as distorted wave theory or convergent close-coupling calculation, the present relatively simpler approach produces correct behavior and numerical values for the triple-differential cross sections. We compare our results with recent absolute measurements and accurate numerical calculations at 2 eV and 4 eV above the threshold at constant theta (12) geometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the role of dynamic polarization of the target electrons in the process of recombination of electrons with multicharged ions (polarizational recombination). Numerical calculations carried out for a number of Ni- and Ne-like ions demonstrate that the inclusion of polarizational recombination leads to a noticeable increase (up to 30%) in the cross sections for incident electron energies outside the regions of dielectronic resonances. We also present a critical analysis of theoretical approaches used by other authors to describe the phenomenon of polarizational recombination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The self-consistent electron potential in a current-carrying disordered quantum wire is spatially inhomogeneous due to the formation of resistivity dipoles across scattering centres. In this paper it is argued that these inhomogeneities in the potential result in a suppression of the differential conductance of such a wire at finite applied voltage. A semi-classical argument allows this suppression, quadratic in the voltage, to be related directly to the amount of intrinsic defect scattering in the wire. This result is then tested against numerical calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The self-modulation of waves propagating in nonlinear magnetic metamaterials is investigated. Considering the propagation of a modulated amplitude magnetic field in such a medium, we show that the self-modulation of the carrier wave leads to a spontaneous energy localization via the generation of localized envelope structures (envelope solitons), whose form and properties are discussed. These results are also supported by numerical calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nonlinear propagation of ion-sound waves in a collisionless dense electron-ion magnetoplasma is investigated. The inertialess electrons are assumed to follow a non-Boltzmann distribution due to the pressure for the Fermi plasma and the ions are described by the hydrodynamic (HD) equations. An energy balance-like equation involving a new Sagdeev-type pseudo-potential is derived in the presence of the quantum statistical effects. Numerical calculations reveal that the profiles of the Sagdeev-like potential and the ion-sound density excitations are significantly affected by the wave direction cosine and the Mach number. The present studies might be helpful to understand the excitation of nonlinear ion-sound waves in dense plasmas such as those in superdense white dwarfs and neutron stars as well as in intense laser-solid density plasma experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A many-body theory approach to the calculation of gamma spectra of positron annihilation on many-electron atoms is developed. We evaluate the first-order correlation correction to the annihilation vertex and perform numerical calculations for the noble gas atoms. Extrapolation with respect to the maximal orbital momentum of the intermediate electron and positron states is used to achieve convergence. The inclusion of correlation corrections improves agreement with experimental gamma spectra.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use many-body theory to find the asymptotic behaviour of second-order correlation corrections to the energies and positron annihilation rates in many- electron systems with respect to the angular momenta l of the single-particle orbitals included. The energy corrections decrease as 1/(l+1/2)4, in agreement with the result of Schwartz, whereas the positron annihilation rate has a slower 1/(l+1/2)2 convergence rate. We illustrate these results by numerical calculations of the energies of Ne and Kr and by examining results from extensive con?guration-interaction calculations of PsH binding and annihilation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The many-electron-correlated scattering (MECS) approach to quantum electronic transport was investigated in the linear-response regime [I. Bâldea and H. Köppel, Phys. Rev. B 78, 115315 (2008). The authors suggest, based on numerical calculations, that the manner in which the method imposes boundary conditions is unable to reproduce the well-known phenomena of conductance quantization. We introduce an analytical model and demonstrate that conductance quantization is correctly obtained using open system boundary conditions within the MECS approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present an efficient and accurate method to study electron detachment from negative ions by a few-cycle linearly polarized laser pulse. The adiabatic saddle-point method of Gribakin and Kuchiev [Phys. Rev. A 55, 3760 (1997)] is adapted to calculate the transition amplitude for a short laser pulse. Its application to a pulse with N optical cycles produces 2(N + 1) saddle points in complex time, which form a characteristic "smile." Numerical calculations are performed for H(-) in a 5-cycle pulse with frequency 0.0043 a.u. and intensities of 10(10), 5 x 10(10), and 10(11) W/cm(2), and for various carrier-envelope phases. We determine the spectrum of the photoelectrons as a function of both energy and emission angle, as well as the angle-integrated energy spectra and total detachment probabilities. Our calculations show that the dominant contribution to the transition amplitude is given by 5-6 central saddle points, which correspond to the strongest part of the pulse. We examine the dependence of the photoelectron angular distributions on the carrier-envelope phase and show that measuring such distributions can provide a way of determining this phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recent adiabatic saddle-point approach of Shearer et al. [ Phys. Rev. A 84 033409 (2011)] is extended to multiphoton detachment of negative ions with outer p-state electrons. This theory is applied to investigate the strong-field photodetachment dynamics of F- ions exposed to few-cycle femtosecond laser pulses, without taking into account the rescattering mechanism. Numerical calculations are considered for mid-infrared laser wavelengths of 1300 and 1800 nm at laser intensities of 7.7 × 1012, 1.1 × 1013, and 1.3 × 1013 W/cm2. Two-dimensional momenta saddle-point spectra exhibit a distinct distribution in the shape of a “smile” in the complex-time plane. Electron momentum distribution maps of direct electrons are investigated. These produce a distinct pattern of above-threshold detachment (ATD) concentric rings due to constructive and destructive quantum interference of electrons detached from their parent ions. Probability detachment distributions presented, capturing the influence of saturation effects that are found to become more significant with increasing laser intensity at a fixed wavelength. ATD photoangular distributions as functions of laser intensity and wavelength near channel closings are also investigated and found to be sensitive to initial-state symmetry. Nonmonotonic structures observed in the ejected photoelectron energy spectra are attributed to interference effects from coherent electronic wave packets. Additionally the profiles of all the photoelectron emission spectra show strong dependence on the carrier-envelope phase, indicating that it is a reliable parameter for characterizing the wave form of the pulse.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present observations of intense beams of energetic negative hydrogen ions and fast neutral hydrogen atoms in intense (5 × 10 W/cm) laser plasma interaction experiments, which were quantified in numerical calculations. Generation of negative ions and neutral atoms is ascribed to the processes of electron capture and loss by a laser accelerated positive ion in the collisions with a cloud of droplets. A comparison with a numerical model of charge exchange processes provides information on the cross section of the electron capture in the high energy domain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho investiga novas metodologias para as redes óticas de acesso de próxima geração (NG-OAN). O trabalho está dividido em quatro tópicos de investigação: projeto da rede, modelos numéricos para efeitos não lineares da fibra ótica, impacto dos efeitos não lineares da fibra ótica e otimização da rede. A rede ótica de acesso investigada nesse trabalho está projetado para suprir os requisitos de densidade de utilizadores e cobertura, isto é, suportar muitos utilizadores ( 1000) com altas velocidades de conexão dedicada ( 1 Gb/s) ocupando uma faixa estreita do espectro ( 25 nm) e comprimentos de fibra ótica até 100 km. Os cenários são baseados em redes óticas passivas com multiplexagem por divisão no comprimento de onda de alta densidade (UDWDM-PON) utilizando transmissores/receptores coerentes nos terminais da rede. A rede é avaliada para vários ritmos de transmissão usando formatos de modulação avançados, requisitos de largura de banda por utilizador e partilha de banda com tecnologias tradicionais de redes óticas passivas (PON). Modelos numéricos baseados em funções de transferência das séries de Volterra (VSTF) são demonstrados tanto para a análise dos efeitos não lineares da fibra ótica quanto para avaliação do desempenho total da rede. São apresentadas as faixas de potência e distância de transmissão nas quais as séries de Volterra apresentam resultados semelhantes ao modelo referência Split-Step Fourier (SSF) (validado experimentalmente) para o desempenho total da rede. Além disso, um algoritmo, que evita componentes espectrais com intensidade nulo, é proposto para realizar cálculos rápidos das séries. O modelo VSTF é estendido para identificar unicamente os efeitos não lineares da fibra ótica mais relevantes no cenário investigado: Self-Phase Modulation (SPM), Cross-Phase Modulation (XPM) e Four-Wave Mixing (FWM). Simulações numéricas são apresentadas para identificar o impacto isolado de cada efeito não linear da fibra ótica, SPM, XPM e FWM, no desempenho da rede com detecção coerente UDWDM-PON, transportando canais com modulação digital em fase (M-ária PSK) ou modulação digital em amplitude (M-ária QAM). A análise numérica é estendida para diferentes comprimentos de fibra ótica mono modo (SSMF), potência por canal e ritmo de transmissão por canal. Por conseguinte, expressões analíticas são extrapoladas para determinar a evolução do SPM, XPM e FWM em função da potência e distância de transmissão em cenários NG-OAN. O desempenho da rede é otimizada através da minimização parcial da interferência FWM (via espaçamento desigual dos canais), que nesse caso, é o efeito não linear da fibra ótica mais relevante. Direções para melhorias adicionas no desempenho da rede são apresentados para cenários em que o XPM é relevante, isto é, redes transportando formatos de modulação QAM. A solução, nesse caso, é baseada na utilização de técnicas de processamento digital do sinal.