938 resultados para Non-negative rational numbers
Resumo:
Lecture notes in PDF
Resumo:
Use of orthogonal space-time block codes (STBCs) with multiple transmitters and receivers can improve signal quality. However, in optical intensity modulated signals, output of the transmitter is non-negative and hence standard orthogonal STBC schemes need to be modified. A generalised framework for applying orthogonal STBCs for free-space IM/DD optical links is presented.
Resumo:
Theory of mind ability has been associated with performance in interpersonal interactions and has been found to influence aspects such as emotion recognition, social competence, and social anxiety. Being able to attribute mental states to others requires attention to subtle communication cues such as facial emotional expressions. Decoding and interpreting emotions expressed by the face, especially those with negative valence, are essential skills to successful social interaction. The current study explored the association between theory of mind skills and attentional bias to facial emotional expressions. According to the study hypothesis, individuals with poor theory of mind skills showed preferential attention to negative faces over both non-negative faces and neutral objects. Tentative explanations for the findings are offered emphasizing the potential adaptive role of vigilance for threat as a way of allocating a limited capacity to interpret others’ mental states to obtain as much information as possible about potential danger in the social environment.
Resumo:
Use of orthogonal space-time block codes (STBCs) with multiple transmitters and receivers can improve signal quality. However, in optical intensity modulated signals, output of the transmitter is non-negative and hence standard orthogonal STBC schemes need to be modified. A generalised framework for applying orthogonal STBCs for free-space IM/DD optical links is presented.
Resumo:
A system identification algorithm is introduced for Hammerstein systems that are modelled using a non-uniform rational B-spline (NURB) neural network. The proposed algorithm consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples are utilized to demonstrate the efficacy of the proposed approach.
Resumo:
This paper is concerned with tensor clustering with the assistance of dimensionality reduction approaches. A class of formulation for tensor clustering is introduced based on tensor Tucker decomposition models. In this formulation, an extra tensor mode is formed by a collection of tensors of the same dimensions and then used to assist a Tucker decomposition in order to achieve data dimensionality reduction. We design two types of clustering models for the tensors: PCA Tensor Clustering model and Non-negative Tensor Clustering model, by utilizing different regularizations. The tensor clustering can thus be solved by the optimization method based on the alternative coordinate scheme. Interestingly, our experiments show that the proposed models yield comparable or even better performance compared to most recent clustering algorithms based on matrix factorization.
Resumo:
For any number field we calculate the exact proportion of rational numbers which are everywhere locally a norm but not globally a norm from the number field.
Resumo:
We present a one-parameter extension of the raise and peel one-dimensional growth model. The model is defined in the configuration space of Dyck (RSOS) paths. Tiles from a rarefied gas hit the interface and change its shape. The adsorption rates are local but the desorption rates are non-local; they depend not only on the cluster hit by the tile but also on the total number of peaks (local maxima) belonging to all the clusters of the configuration. The domain of the parameter is determined by the condition that the rates are non-negative. In the finite-size scaling limit, the model is conformal invariant in the whole open domain. The parameter appears in the sound velocity only. At the boundary of the domain, the stationary state is an adsorbing state and conformal invariance is lost. The model allows us to check the universality of non-local observables in the raise and peel model. An example is given.
Resumo:
We consider a 1-dimensional reaction-diffusion equation with nonlinear boundary conditions of logistic type with delay. We deal with non-negative solutions and analyze the stability behavior of its unique positive equilibrium solution, which is given by the constant function u equivalent to 1. We show that if the delay is small, this equilibrium solution is asymptotically stable, similar as in the case without delay. We also show that, as the delay goes to infinity, this equilibrium becomes unstable and undergoes a cascade of Hopf bifurcations. The structure of this cascade will depend on the parameters appearing in the equation. This equation shows some dynamical behavior that differs from the case where the nonlinearity with delay is in the interior of the domain. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The goal of this paper is to analyze the character of the first Hopf bifurcation (subcritical versus supercritical) that appears in a one-dimensional reaction-diffusion equation with nonlinear boundary conditions of logistic type with delay. We showed in the previous work [Arrieta et al., 2010] that if the delay is small, the unique non-negative equilibrium solution is asymptotically stable. We also showed that, as the delay increases and crosses certain critical value, this equilibrium becomes unstable and undergoes a Hopf bifurcation. This bifurcation is the first one of a cascade occurring as the delay goes to infinity. The structure of this cascade will depend on the parameters appearing in the equation. In this paper, we show that the first bifurcation that occurs is supercritical, that is, when the parameter is bigger than the delay bifurcation value, stable periodic orbits branch off from the constant equilibrium.
Resumo:
The awareness of the difficulty which pupils, in general have in understanding the concept and operations with Rational numbers, it made to develop this study which searches to collaborate for such understanding. Our intuition was to do with that the pupils of the Education of Young and Adults, with difficulty in understanding the Rational numbers, feel included in the learning-teaching process of mathematics. It deals with a classroom research in a qualitative approach with analysis of the activities resolved for a group of pupils in classroom of a municipal school of Natal. For us elaborate such activities we accomplished the survey difficulties and obstacles that the pupils experience, when inserted in the learning-teaching process of the Rational numbers. The results indicate that the sequence of activities applied in classroom collaborated so that the pupils to overcome some impediments in the learning of this numbers
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We address the different "personalities" of the rational number and the concept of proportionality, analyzing the possibilities for using the Mathematics Teaching and Learning through Problem-solving Method. This method is based on the principle that knowledge can be constructed through the use of problems that generate new concepts and new contents. The different meanings of rational number - rational point, quotient, fraction, ratio, and operator - are constructs that depend on mathematical theories in which they are imbedded and the situations that evoke them in problem-solving. Some data will be presented from continuing education courses for teachers, aiming to contribute to understanding regarding the different "personalities" of the rational number. In general, these "personalities" are not easily identified by teachers and students, which is the reason for the many difficulties encountered during problem-solving involving rational numbers. One of these "personalities", the ratio, provides the basis for the concept of proportionality, which is relevant because it is a unifying idea in mathematics.
Resumo:
We propose new classes of linear codes over integer rings of quadratic extensions of Q, the field of rational numbers. The codes are considered with respect to a Mannheim metric, which is a Manhattan metric modulo a two-dimensional (2-D) grid. In particular, codes over Gaussian integers and Eisenstein-Jacobi integers are extensively studied. Decoding algorithms are proposed for these codes when up to two coordinates of a transmitted code vector are affected by errors of arbitrary Mannheim weight. Moreover, we show that the proposed codes are maximum-distance separable (MDS), with respect to the Hamming distance. The practical interest in such Mannheim-metric codes is their use in coded modulation schemes based on quadrature amplitude modulation (QAM)-type constellations, for which neither the Hamming nor the Lee metric is appropriate.
Resumo:
Constrained intervals, intervals as a mapping from [0, 1] to polynomials of degree one (linear functions) with non-negative slopes, and arithmetic on constrained intervals generate a space that turns out to be a cancellative abelian monoid albeit with a richer set of properties than the usual (standard) space of interval arithmetic. This means that not only do we have the classical embedding as developed by H. Radström, S. Markov, and the extension of E. Kaucher but the properties of these polynomials. We study the geometry of the embedding of intervals into a quasilinear space and some of the properties of the mapping of constrained intervals into a space of polynomials. It is assumed that the reader is familiar with the basic notions of interval arithmetic and interval analysis. © 2013 Springer-Verlag Berlin Heidelberg.