967 resultados para Neutron detection efficiency
Resumo:
To maximise data output from single-shot astronomical images, the rejection of cosmic rays is important. We present the results of a benchmark trial comparing various cosmic ray rejection algorithms. The procedures assess relative performances and characteristics of the processes in cosmic ray detection, rates of false detections of true objects, and the quality of image cleaning and reconstruction. The cosmic ray rejection algorithms developed by Rhoads (2000, PASP, 112, 703), van Dokkum (2001, PASP, 113, 1420), Pych (2004, PASP, 116, 148), and the IRAF task xzap by Dickinson are tested using both simulated and real data. It is found that detection efficiency is independent of the density of cosmic rays in an image, being more strongly affected by the density of real objects in the field. As expected, spurious detections and alterations to real data in the cleaning process are also significantly increased by high object densities. We find the Rhoads' linear filtering method to produce the best performance in the detection of cosmic ray events; however, the popular van Dokkum algorithm exhibits the highest overall performance in terms of detection and cleaning.
Resumo:
Abstract Short intense pulses of fast neutrons were produced in a two stage laser-driven experiment. Protons were accelerated by means of the Target Normal Sheath Acceleration (TNSA) method using the TITAN facility at the Lawrence Livermore National Laboratory. Neutrons were obtained following interactions of the protons with a secondary lithium fluoride (LiF) target. The properties of the neutron flux were studied using BC-400 plastic scintillation detectors and the neutron time of flight (nTOF) technique. The detector setup and the experimental conditions were simulated with the Geant4 toolkit. The effects of different components of the experimental setup on the nTOF were studied. Preliminary results from a comparison between experimental and simulated nTOF distributions are presented.
Resumo:
Experiments searching for weak interacting massive particles with noble gases such as liquid argon require very low detection thresholds for nuclear recoils. A determination of the scintillation efficiency is crucial to quantify the response of the detector at low energy. We report the results obtained with a small liquid argon cell using a monoenergetic neutron beam produced by a deuterium-deuterium fusion source. The light yield relative to electrons was measured for six argon recoil energies between 11 and 120 keV at zero electric drift field.
Resumo:
Recently, we reported a low-complexity likelihood ascent search (LAS) detection algorithm for large MIMO systems with several tens of antennas that can achieve high spectral efficiencies of the order of tens to hundreds of bps/Hz. Through simulations, we showed that this algorithm achieves increasingly near SISO AWGN performance for increasing number of antennas in Lid. Rayleigh fading. However, no bit error performance analysis of the algorithm was reported. In this paper, we extend our work on this low-complexity large MIMO detector in two directions: i) We report an asymptotic bit error probability analysis of the LAS algorithm in the large system limit, where N-t, N-r -> infinity keeping N-t = N-r, where N-t and N-r are the number of transmit and receive antennas, respectively. Specifically, we prove that the error performance of the LAS detector for V-BLAST with 4-QAM in i.i.d. Rayleigh fading converges to that of the maximum-likelihood (ML) detector as N-t, N-r -> infinity keeping N-t = N-r ii) We present simulated BER and nearness to capacity results for V-BLAST as well as high-rate non-orthogonal STBC from Division Algebras (DA), in a more realistic spatially correlated MIMO channel model. Our simulation results show that a) at an uncoded BER of 10(-3), the performance of the LAS detector in decoding 16 x 16 STBC from DA with N-t = = 16 and 16-QAM degrades in spatially correlated fading by about 7 dB compared to that in i.i.d. fading, and 19) with a rate-3/4 outer turbo code and 48 bps/Hz spectral efficiency, the performance degrades by about 6 dB at a coded BER of 10(-4). Our results further show that providing asymmetry in number of antennas such that N-r > N-t keeping the total receiver array length same as that for N-r = N-t, the detector is able to pick up the extra receive diversity thereby significantly improving the BER performance.
Resumo:
We propose and demonstrate a technique for electrical detection of polarized spins in semiconductors in zero applied magnetic fields. Spin polarization is generated by optical injection using circularly polarized light which is modulated rapidly using an electro-optic cell. The modulated spin polarization generates a weak time-varying magnetic field which is detected by a sensitive radio-frequency coil. Using a calibrated pickup coil and amplification electronics, clear signals were obtained for bulk GaAs and Ge samples from which an optical spin orientation efficiency of 4.8% could be determined for Ge at 1342 nm excitation wavelength. In the presence of a small external magnetic field, the signal decayed according to the Hanle effect, from which a spin lifetime of 4.6 +/- 1.0 ns for electrons in bulk Ge at 127 K was extracted.
Resumo:
Antibody orientation and its antigen binding efficiency at interface are of particular interest in many immunoassays and biosensor applications. In this paper, spectroscopic ellipsometry (SE), neutron reflection (NR), and dual polarization interferometry (DPI) have been used to investigate interfacial assembly of the antibody [mouse monoclonal anti-human prostate-specific antigen (anti-hPSA)] at the silicon oxide/water interface and subsequent antigen binding. It was found that the mass density of antibody adsorbed at the interface increased with solution concentration and adsorption time while the antigen binding efficiency showed a steady decline with increasing antibody amount at the interface over the concentration range studied. The amount of antigen bound to the interfacial immobilized antibody reached a maximum when the surface-adsorbed amount of antibody was around 1.5 mg/m(2). This phenomenon is well interpreted by the interfacial structural packing or crowding. NR revealed that the Y-shaped antibody laid flat on the interface at low surface mass density with a thickness around 40 Å, equivalent to the short axial length of the antibody molecule. The loose packing of the antibody within this range resulted in better antigen binding efficiency, while the subsequent increase of surface-adsorbed amount led to the crowding or overlapping of antibody fragments, hence reducing the antigen binding due to the steric hindrance. In situ studies of antigen binding by both NR and DPI demonstrated that the antigen inserted into the antibody layer rather than forming an additional layer on the top. Stability assaying revealed that the antibody immobilized at the silica surface remained stable and active over the monitoring period of 4 months. These results are useful in forming a general understanding of antibody interfacial behavior and particularly relevant to the control of their activity and stability in biosensor development.
Resumo:
The research of the in-beam efficiency calibration of Neutron Detector Array of Peking University using N-17 and C-16 beams was introduced in this paper. The efficiency of neutron wall and ball are comparable to the foreign similar devices and neutrons can be detected from low to high energies in high efficiency.
Resumo:
Visual search is an important component of our interaction with our surroundings, allowing us to successfully identify external cues that impact our spatial navigation. Previous research has established fixation duration, fixation count, saccade velocity, and saccade amplitude as important indices of visual search. We examined the Visual Efficiency Detection Index (VEDI) comprising multiple aspects of visual search performance into a single measure of global visual performance. Forty participants, 10 adults ages 22-48, and children ages 6, 8, and 10, completed tests of working memory and visual search in response to stimuli relevant to pedestrian decision making. Results indicated VEDI statistically relates to established indices of visual search in relation to their interpretability for human performance. The VEDI was also sensitive to developmental differences in visual search performance, suggesting insight to its utility in the developmental psychological literature.
Resumo:
Sensitive optical detection of nitroaromatic vapours with diketo-pyrrolopyrrole thin films is reported for the first time and the impact of thin film crystal structure and morphology on fluorescence quenching behaviour demonstrated.
Resumo:
The automatic extraction of road features from remote sensed images has been a topic of great interest within the photogrammetric and remote sensing communities for over 3 decades. Although various techniques have been reported in the literature, it is still challenging to efficiently extract the road details with the increasing of image resolution as well as the requirement for accurate and up-to-date road data. In this paper, we will focus on the automatic detection of road lane markings, which are crucial for many applications, including lane level navigation and lane departure warning. The approach consists of four steps: i) data preprocessing, ii) image segmentation and road surface detection, iii) road lane marking extraction based on the generated road surface, and iv) testing and system evaluation. The proposed approach utilized the unsupervised ISODATA image segmentation algorithm, which segments the image into vegetation regions, and road surface based only on the Cb component of YCbCr color space. A shadow detection method based on YCbCr color space is also employed to detect and recover the shadows from the road surface casted by the vehicles and trees. Finally, the lane marking features are detected from the road surface using the histogram clustering. The experiments of applying the proposed method to the aerial imagery dataset of Gympie, Queensland demonstrate the efficiency of the approach.
Resumo:
Road features extraction from remote sensed imagery has been a long-term topic of great interest within the photogrammetry and remote sensing communities for over three decades. The majority of the early work only focused on linear feature detection approaches, with restrictive assumption on image resolution and road appearance. The widely available of high resolution digital aerial images makes it possible to extract sub-road features, e.g. road pavement markings. In this paper, we will focus on the automatic extraction of road lane markings, which are required by various lane-based vehicle applications, such as, autonomous vehicle navigation, and lane departure warning. The proposed approach consists of three phases: i) road centerline extraction from low resolution image, ii) road surface detection in the original image, and iii) pavement marking extraction on the generated road surface. The proposed method was tested on the aerial imagery dataset of the Bruce Highway, Queensland, and the results demonstrate the efficiency of our approach.