939 resultados para Network on chip


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper details on-chip inductor optimization for a reconfigurable continuous-time delta-sigma (Δ-Σ) modulator based radio-frequency analog-to-digital converter. Inductor optimisation enables the Δ-Σ modulator with Q enhanced LC tank circuits employing a single high Q-factor on-chip inductor and lesser quantizer levels thereby reducing the circuit complexity for excess loop delay, power dissipation and dynamic element matching. System level simulations indicate at a Q-factor of 75 Δ- Σ modulator with a 3-level quantizer achieves dynamic ranges of 106, 82 dB and 84 dB for RFID, TETRA, and Galileo over bandwidths of 200 kHz, 10 MHz and 40 MHz respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On-chip debug (OCD) features are frequently available in modern microprocessors. Their contribution to shorten the time-to-market justifies the industry investment in this area, where a number of competing or complementary proposals are available or under development, e.g. NEXUS, CJTAG, IJTAG. The controllability and observability features provided by OCD infrastructures provide a valuable toolbox that can be used well beyond the debugging arena, improving the return on investment rate by diluting its cost across a wider spectrum of application areas. This paper discusses the use of OCD features for validating fault tolerant architectures, and in particular the efficiency of various fault injection methods provided by enhanced OCD infrastructures. The reference data for our comparative study was captured on a workbench comprising the 32-bit Freescale MPC-565 microprocessor, an iSYSTEM IC3000 debugger (iTracePro version) and the Winidea 2005 debugging package. All enhanced OCD infrastructures were implemented in VHDL and the results were obtained by simulation within the same fault injection environment. The focus of this paper is on the comparative analysis of the experimental results obtained for various OCD configurations and debugging scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid increase in the use of microprocessor-based systems in critical areas, where failures imply risks to human lives, to the environment or to expensive equipment, significantly increased the need for dependable systems, able to detect, tolerate and eventually correct faults. The verification and validation of such systems is frequently performed via fault injection, using various forms and techniques. However, as electronic devices get smaller and more complex, controllability and observability issues, and sometimes real time constraints, make it harder to apply most conventional fault injection techniques. This paper proposes a fault injection environment and a scalable methodology to assist the execution of real-time fault injection campaigns, providing enhanced performance and capabilities. Our proposed solutions are based on the use of common and customized on-chip debug (OCD) mechanisms, present in many modern electronic devices, with the main objective of enabling the insertion of faults in microprocessor memory elements with minimum delay and intrusiveness. Different configurations were implemented starting from basic Components Off-The-Shelf (COTS) microprocessors, equipped with real-time OCD infrastructures, to improved solutions based on modified interfaces, and dedicated OCD circuitry that enhance fault injection capabilities and performance. All methodologies and configurations were evaluated and compared concerning performance gain and silicon overhead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperspectral instruments have been incorporated in satellite missions, providing large amounts of data of high spectral resolution of the Earth surface. This data can be used in remote sensing applications that often require a real-time or near-real-time response. To avoid delays between hyperspectral image acquisition and its interpretation, the last usually done on a ground station, onboard systems have emerged to process data, reducing the volume of information to transfer from the satellite to the ground station. For this purpose, compact reconfigurable hardware modules, such as field-programmable gate arrays (FPGAs), are widely used. This paper proposes an FPGA-based architecture for hyperspectral unmixing. This method based on the vertex component analysis (VCA) and it works without a dimensionality reduction preprocessing step. The architecture has been designed for a low-cost Xilinx Zynq board with a Zynq-7020 system-on-chip FPGA-based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low-cost embedded systems, opening perspectives for onboard hyperspectral image processing.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microfabricated poly(dimethylsiloxane) (PDMS) chip containing channel filled with polymer monolith has been developed for on-chip biomolecule separation. Methacrylate monolithic polymers were prepared by photo-initiated polymerization within the channel to serve as a continuous stationary phase. The monolithic polymer was functionalized with a weak anion-exchange ligand, and key parameters affecting the binding characteristics of the system were investigated. The total binding capacity was unaffected by the flow rate of the mobile phase but varied significantly with changes in ionic strength and pH of the binding buffer. The binding capacity decreased with increasing buffer ionic strength, and this is due to the limited available binding sites for protein adsorption resulting from cationic shielding effect. Similarly, the binding capacity decreased with decreasing buffer pH towards the isoelectric point of the protein. A protein mixture, BSA and ovalbumin, was used to illustrate the capacity of the methacrylate-based microfluidic chip for rapid biomolecule separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this thesis is to discuss the development and modeling of an interface architecture to be employed for interfacing analog signals in mixed-signal SOC. We claim that the approach that is going to be presented is able to achieve wide frequency range, and covers a large range of applications with constant performance, allied to digital configuration compatibility. Our primary assumptions are to use a fixed analog block and to promote application configurability in the digital domain, which leads to a mixed-signal interface. The use of a fixed analog block avoids the performance loss common to configurable analog blocks. The usage of configurability on the digital domain makes possible the use of all existing tools for high level design, simulation and synthesis to implement the target application, with very good performance prediction. The proposed approach utilizes the concept of frequency translation (mixing) of the input signal followed by its conversion to the ΣΔ domain, which makes possible the use of a fairly constant analog block, and also, a uniform treatment of input signal from DC to high frequencies. The programmability is performed in the ΣΔ digital domain where performance can be closely achieved according to application specification. The interface performance theoretical and simulation model are developed for design space exploration and for physical design support. Two prototypes are built and characterized to validate the proposed model and to implement some application examples. The usage of this interface as a multi-band parametric ADC and as a two channels analog multiplier and adder are shown. The multi-channel analog interface architecture is also presented. The characterization measurements support the main advantages of the approach proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com as recentes tecnologias de fabricação é possível integrar milhões de transistores em um único chip, permitindo a criação dos chamados System-on-Chip (SoCs), que integram em um único chip um grande número de componentes (tipicamente blocos reutilizáveis conhecidos por núcleos). Quanto mais complexos forem estes sistemas, melhores técnicas de projeto serão necessárias para também reduzir o tempo e custo do projeto. Uma destas técnicas, chamada de Network-on-Chip (NoC), permite melhorar a performance da comunicação entre os núcleos e, ao mesmo tempo, fornecer uma plataforma de comunicação escalável e que pode ser reutilizada para um grande número de sistemas. Uma NoC pode ser definida como uma estrutura de roteadores e canais ponto-a-ponto que interconectam os núcleos de um sistema, provendo o suporte de comunicação entre eles. Os dados são transmitidos pela rede na forma de mensagens, que podem ser divididas em unidades menores chamadas de pacote. Uma das desvantagens desta plataforma de comunicação é o impacto na área do sistema causado pelos roteadores. Dentro deste contexto, este trabalho apresenta uma arquitetura de roteador de baixo custo, com o objetivo de permitir o uso de NoCs em sistemas onde a área do roteador representará um grande impacto no custo do sistema. A arquitetura deste roteador, chamado de Tonga, é baseada em um roteador chamado RASoC, um soft-core para SoCs. Nesta dissertação será apresentada também uma rede heterogênea, baseada na rede SoCIN, e composta por dois tipos de roteadores – RASoC e Tonga. Estes roteadores visam diferentes objetivos: Rasoc alcança uma maior performance comparada ao Tonga, mas ocupa área consideravelmente maior. Potencialmente, uma NoC heterogênea otimizada pode ser desenvolvida combinando estes roteadores, procurando o melhor compromisso entre área e latência. Os modelos desenvolvidos permitem a estimativa de área e do desempenho das arquiteturas de comunicação propostas e são apresentados resultados de performance para algumas aplicações.