892 resultados para Nanotoxicity, Genotoxicity, Zinc oxide nanoparticles, respiratory epithelia, DNA damages


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bottom-up technique for synthesizing transversely suspended zinc oxide nanowires (ZnO NWs) under a zinc nitrate (Zn(NO 3) 2· 6H 2O) and hexamethylenetetramine (HMTA, (CH 2) 6·N 4) solution within a microfabricated device is reported in this paper. The device consists of a microheater which is used to initially create an oxidized ZnO seed layer. ZnO NWs are then locally synthesized by the microheater and electrodes embedded within the devices are used to drive electric field directed horizontal alignment of the nanowires within the device. The entire process is carried out at low temperature. This approach has the potential to considerably simplify the fabrication and assembly of ZnO nanowires on CMOS compatible substrates, allowing for the chemical synthesis to be carried out under near-ambient conditions by locally defining the conditions for nanowire growth on a silicon reactor chip. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superparamagnetic iron oxide nanoparticles were synthesized by injecting ferrocene vapor and oxygen into an argon/helium DC thermal plasma. Size distributions of particles in the reactor exhaust were measured online using an aerosol extraction probe interfaced to a scanning mobility particle sizer, and particles were collected on transmission electron microscopy (TEM) grids and glass fiber filters for off-line characterization. The morphology, chemical and phase composition of the nanoparticles were characterized using TEM and X-ray diffraction, and the magnetic properties of the particles were analyzed with a vibrating sample magnetometer and a magnetic property measurement system. Aerosol at the reactor exhaust consisted of both single nanocrystals and small agglomerates, with a modal mobility diameter of 8-9 nm. Powder synthesized with optimum oxygen flow rate consisted primarily of magnetite (Fe 3O 4), and had a room-temperature saturation magnetization of 40.15 emu/g, with a coercivity and remanence of 26 Oe and 1.5 emu/g, respectively. © Springer Science+Business Media, LLC 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly c-axis oriented ZnO films have been deposited at room temperature with high rates (∼50 nm·min -1) using an innovative remote plasma sputtering configuration, which allows independent control of the plasma density and the sputtering ion energy. The ZnO films deposited possess excellent crystallographic orientation, high resistivity (>10 9 Ω·m), and exhibit very low surface roughness. The ability to increase the sputtering ion energy without causing unwanted Ar + bombardment onto the substrate has been shown to be crucial for the growth of films with excellent c-axis orientation without the need of substrate heating. In addition, the elimination of the Ar + bombardment has facilitated the growth of films with very low defect density and hence very low intrinsic stress (100 MPa for 3 μm-thick films). This is over an order of magnitude lower than films grown with a standard magnetron sputtering system. © 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two near-ultraviolet (UV) sensors based on solution-grown zinc oxide (ZnO) nanowires (NWs) which are only sensitive to photo-excitation at or below 400 nm wavelength have been fabricated and characterized. Both devices keep all processing steps, including nanowire growth, under 100 °C for compatibility with a wide variety of substrates. The first device type uses a single optical lithography step process to allow simultaneous in situ horizontal NW growth from solution and creation of symmetric ohmic contacts to the nanowires. The second device type uses a two-mask optical lithography process to create asymmetric ohmic and Schottky contacts. For the symmetric ohmic contacts, at a voltage bias of 1 V across the device, we observed a 29-fold increase in current in comparison to dark current when the NWs were photo-excited by a 400 nm light-emitting diode (LED) at 0.15 mW cm(-2) with a relaxation time constant (τ) ranging from 50 to 555 s. For the asymmetric ohmic and Schottky contacts under 400 nm excitation, τ is measured between 0.5 and 1.4 s over varying time internals, which is ~2 orders of magnitude faster than the devices using symmetric ohmic contacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A catalyst-free synthesis of ZnO nanostructures using platinum microheaters under ambient environmental conditions has been developed. Different types of ZnO nanostructures are synthesized from the oxidization of Zn thin film by local heating. The characterization of two shapes of Pt microheaters is investigated and the relationship between the applied power for heat generation and ZnO nanostructure synthesis is investigated by local heating experiments under ambient conditions. Based on the developed heating approach, synthesis area, location, and morphologies of ZnO nanostructures can be controlled through the deposited thickness of Zn layer and applied heating voltages. Furthermore, a connected multiple-structure (Zn-ZnO-Zn) layer is synthesized using combinative multimicroheaters. © 2002-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper reports on the in-situ growth of zinc oxide nanowires (ZnONWs) on a complementary metal oxide semiconductor (CMOS) substrate, and their performance as a sensing element for ppm (parts per million) levels of toluene vapour in 3000 ppm humid air. Zinc oxide NWs were grown using a low temperature (only 90°C) hydrothermal method. The ZnONWs were first characterised both electrically and through scanning electron microscopy. Then the response of the on-chip ZnONWs to different concentrations of toluene (400-2600ppm) was observed in air at 300°C. Finally, their gas sensitivity was determined and found to lie between 0.1% and 0.3% per ppm. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we demonstrate an approach for the local synthesis of ZnO nanowires (ZnO NWs) and the potential for such structures to be incorporated into device applications. Three network ZnO NW devices are fabricated on a chip by using a bottom-up synthesis approach. Microheaters (defined by standard semiconductor processing) are used to synthesize the ZnO NWs under a zinc nitrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMTA, (CH2)6·N4) solution. By controlling synthesis parameters, varying densities of networked ZnO NWs are locally synthesized on the chip. The fabricated networked ZnO NW devices are then characterized using UV excitation and cyclic voltammetry (CV) experiments to measure their photoresponse and electrochemical properties. The experimental results show that the techniques and material systems presented here have the potential to address interesting device applications using fabrication methods that are fully compatible with standard semiconductor processing. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation. © 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-switching diodes have been fabricated within a single layer of indium-gallium zinc oxide (IGZO). Current-voltage (I-V) measurements show the nanometer-scale asymmetric device gave a diode-like response. Full current rectification was achieved using very narrow channel widths of 50nm, with a turn-on voltage, Von, of 2.2V. The device did not breakdown within the -10V bias range measured. This single diode produced a current of 0.1μA at 10V and a reverse current of less than 0.1nA at -10V. Also by adjusting the channel width for these devices, Von could be altered; however, the effectiveness of the rectification also changed. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2014 AIP Publishing LLC. Superparamagnetic nanoparticles are employed in a broad range of applications that demand detailed magnetic characterization for superior performance, e.g., in drug delivery or cancer treatment. Magnetic hysteresis measurements provide information on saturation magnetization and coercive force for bulk material but can be equivocal for particles having a broad size distribution. Here, first-order reversal curves (FORCs) are used to evaluate the effective magnetic particle size and interaction between equally sized magnetic iron oxide (Fe2O3) nanoparticles with three different morphologies: (i) pure Fe2O3, (ii) Janus-like, and (iii) core/shell Fe2O3/SiO2synthesized using flame technology. By characterizing the distribution in coercive force and interaction field from the FORC diagrams, we find that the presence of SiO2in the core/shell structures significantly reduces the average coercive force in comparison to the Janus-like Fe2O3/SiO2and pure Fe2O3particles. This is attributed to the reduction in the dipolar interaction between particles, which in turn reduces the effective magnetic particle size. Hence, FORC analysis allows for a finer distinction between equally sized Fe2O3particles with similar magnetic hysteresis curves that can significantly influence the final nanoparticle performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been previously observed that thin film transistors (TFTs) utilizing an amorphous indium gallium zinc oxide (a-IGZO) semiconducting channel suffer from a threshold voltage shift when subjected to a negative gate bias and light illumination simultaneously. In this work, a thermalization energy analysis has been applied to previously published data on negative bias under illumination stress (NBIS) in a-IGZO TFTs. A barrier to defect conversion of 0.65-0.75 eV is extracted, which is consistent with reported energies of oxygen vacancy migration. The attempt-to-escape frequency is extracted to be 10 6-107 s-1, which suggests a weak localization of carriers in band tail states over a 20-40 nm distance. Models for the NBIS mechanism based on charge trapping are reviewed and a defect pool model is proposed in which two distinct distributions of defect states exist in the a-IGZO band gap: these are associated with states that are formed as neutrally charged and 2+ charged oxygen vacancies at the time of film formation. In this model, threshold voltage shift is not due to a defect creation process, but to a change in the energy distribution of states in the band gap upon defect migration as this allows a state formed as a neutrally charged vacancy to be converted into one formed as a 2+ charged vacancy and vice versa. Carrier localization close to the defect migration site is necessary for the conversion process to take place, and such defect migration sites are associated with conduction and valence band tail states. Under negative gate bias stressing, the conduction band tail is depleted of carriers, but the bias is insufficient to accumulate holes in the valence band tail states, and so no threshold voltage shift results. It is only under illumination that the quasi Fermi level for holes is sufficiently lowered to allow occupation of valence band tail states. The resulting charge localization then allows a negative threshold voltage shift, but only under conditions of simultaneous negative gate bias and illumination, as observed experimentally as the NBIS effect. © 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Segregating the dynamics of gate bias induced threshold voltage shift, and in particular, charge trapping in thin film transistors (TFTs) based on time constants provides insight into the different mechanisms underlying TFTs instability. In this Letter we develop a representation of the time constants and model the magnitude of charge trapped in the form of an equivalent density of created trap states. This representation is extracted from the Fourier spectrum of the dynamics of charge trapping. Using amorphous In-Ga-Zn-O TFTs as an example, the charge trapping was modeled within an energy range of ΔEt 0.3 eV and with a density of state distribution as Dt(Et-j)=Dt0exp(-ΔEt/ kT)with Dt0 = 5.02 × 1011 cm-2 eV-1. Such a model is useful for developing simulation tools for circuit design. © 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resistivity of hydrothermally grown ZnO single crystals increased from similar to 10(3) Omega cm to similar to 10(6) Omega cm after 1.8 MeV electron irradiation with a fluence of similar to 10(16) cm(-2), and to similar to 10(9) Omega cm as the fluence increased to similar to 10(18) cm(-2). Defects in samples were studied by thermally stimulated current (TSC) spectroscopy and positron lifetime spectroscopy (PLS). After the electron irradiation with a fluence of 10(18) cm(-2), the normalized TSC signal increased by a factor of similar to 100. A Zn vacancy was also introduced by the electron irradiation, though with a concentration lower than expected. After annealing in air at 400 degrees C, the resistivity and the deep traps concentrations recovered to the levels of the as-grown sample, and the Zn vacancy was removed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compared to conjugated polymer poly[2-methoxy-5- (3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) solar cells, bulk heterojunction solar cells composed of zinc oxide (ZnO) nanocrystals and MDMO-PPV have a better energy conversion efficiency, However, ultraviolet (UV) light deteriorates the performance of solar cells composed of ZnO and MDMO-PPV. We propose a model to explain the effect of UV illumination on these ZnO:MDMO-PPV solar cells. According to this model, the degradation from UV illumination is due to a decrease of exciton dissociation efficiency, Our model is based on the experimental results such as the measurements of current density versus voltage, photoluminescence, and photocurrent.