851 resultados para NaCl intake
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Fisiológicas - FOAR
Resumo:
Central α2-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α2-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α2-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α2-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α2-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sickness behaviour, a syndrome characterized by a general reduction in animal activity, is part of the active-phase response to fight infection. Lipopolysaccharide (LPS), an effective endotoxin to model sickness behaviour, reduces thirst and sodium excretion, and increases neurohypophysial secretion. Here we review the effects of LPS on thirst and sodium appetite. Altered renal function and hydromineral fluid intake in response to LPS occur in the context of behavioural reorganization, which manifests itself as part of the syndrome. Recent data show that, in addition to its classical effect on thirst, non-septic doses of LPS injected intraperitoneally produce a preferential inhibition of intracellular thirst versus extracellular thirst. Moreover, LPS also reduced hypertonic NaCl intake in sodium-depleted rats that entered a sodium appetite test. Antagonism of α2 -adrenoceptors abolished the effect of LPS on sodium appetite. LPS and cytokine transduction potentially recruit brain noradrenaline and α2 -adrenoceptors to control sodium appetite and sickness behaviour.
Resumo:
Central α2-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α2-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α2-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α2-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α2-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α2-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.
Resumo:
The deactivation of the inhibitory mechanisms with injections of moxonidine (alpha(2)-adrenoceptor/imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) increases hypertonic NaCl intake by intra- or extracellular dehydrated rats. In the present study, we investigated the changes in the urinary sodium and volume, sodium balance, and plasma vasopressin and oxytocin in rats treated with intragastric (i.g.) 2 M NaCl load (2 ml/rat) combined with injections of moxonidine into the LPBN. Male Holtzman rats (n=5-12/group) with stainless steel cannulas implanted bilaterally into LPBN were used. Bilateral injections of moxonidine (0.5 nmol/0.2 mu l) into the LPBN decreased i.g. 2 M NaCIinduced diuresis (4.6 +/- 0.7 vs. vehicle: 7.4 +/- 0.6 ml/120 min) and natriuresis (1.65 +/- 0.29 vs. vehicle: 2.53 +/- 0.17 mEq/120 min), whereas the previous injection of the alpha(2)-adrenoceptor antagonist RX 821002 (10 nmol/0.2 mu l) into the LPBN abolished the effects of moxonidline. Moxonidine injected into the LPBN reduced i.g. 2 M NaCl-induced increase in plasma oxytocin and vasopressin (14.6 +/- 2.8 and 2.2 +/- 0.3 vs. vehicle: 25.7 +/- 7 and 4.3 +/- 0.7 pg/ml, respectively). Moxonidine injected into the LPBN combined with i.g. 2 M NaCl also increased 0.3 M NaCl intake (7.5 +/- 1.7 vs. vehicle: 0.5 +/- 0.2 mEq/2 h) and produced positive sodium balance (2.3 +/- 1.4 vs. vehicle: -1.2 +/- 0.4 mEq/2 h) in rats that had access to water and NaCl. The present results show that LPBN alpha(2)-adrenoceptor activation reduces renal and hormonal responses to intracellular dehydration and increases sodium and water intake, which facilitates sodium retention and body fluid volume expansion. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Osmoregulatory mechanisms can be vulnerable to electrolyte and/or endocrine environmental changes during the perinatal period, differentially programming the developing offspring and affecting them even in adulthood. The aim of this study was to evaluate whether availability of hypertonic sodium solution during the perinatal period may induce a differential programming in adult offspring osmoregulatory mechanisms. With this aim, we studied water and sodium intake after Furosemide-sodium depletion in adult offspring exposed to hypertonic sodium solution from 1 week before mating until postnatal day 28 of the offspring, used as a perinatal manipulation model [PM-Na group]. In these animals, we also identified the cell population groups in brain nuclei activated by Furosemide-sodium depletion treatment, analyzing the spatial patterns of Fos and Fos-vasopressin immunoreactivity. In sodium depleted rats, sodium and water intake were significantly lower in the PM-Na group vs. animals without access to hypertonic sodium solution [PM-Ctrol group]. Interestingly, when comparing the volumes consumed of both solutions in each PM group, our data show the expected significant differences between both solutions ingested in the PM-Ctrol group, which makes an isotonic cocktail: however, in the PM-Na group there were no significant differences in the volumes of both solutions consumed after Furosemide-sodium depletion, and therefore the sodium concentration of total fluid ingested by this group was significantly higher than that in the PM-Ctrol group. With regard to brain Fos immunoreactivity, we observed that Furosemide-sodium depletion in the PM-Na group induced a higher number of activated cells in the subfornical organ, ventral subdivision of the paraventricular nucleus and vasopressinergic neurons of the supraoptic nucleus than in the PM-Ctrol animals. Moreover, along the brainstem, we found a decreased number of sodium depletion-activated cells within the nucleus of the solitary tract of the PM-Na group. Our data indicate that early sodium availability induces a long-term effect on fluid drinking and on the cell activity of brain nuclei involved in the control of hydromineral balance. These results also suggest that availability of a rich source of sodium during the perinatal period may provoke a larger anticipatory response in the offspring, activating the vasopressinergic system and reducing thirst after water and sodium depletion, as a result of central osmosensitive mechanism alterations. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Serotonin antagonism in the lateral parabrachial nucleus (LPBN) enhances sodium appetite induced by hypovolaemia and angiotensin-mineralocorticoid activation, but produces no sodium intake in euhydrated animals. In the present work, male adult rats (n=21) that received bilateral injections of the serotonergic antagonist methysergide (4 mug/ 0.2 mul) into the LPBN combined to intragastric load of 2 M NaCl (2 ml/rat), ingested hypertonic NaCl (ingestion of 4.3+/-1.6 ml/2 h of 0.3 M NaCl versus vehicle into LPBN: 0.2+/-0.2 ml/2 h, P<0.05). Methysergide- and vehicle-treated animals also ingested water (9.5+/-0.7 and 7.2+/-0.5 ml/2 h, respectively, P>0.05) as expected from the state of cell dehydration produced by the load. Ingestion of water (11.0+/-1.2 ml/2 h), and of 0.3 M NaCl (1.1+/-0.7 ml/2 h) were not altered by methysergide in NaCl loaded rats with misplaced LPBN injections (n=15). The ingestion of hypertonic NaCl by rats with serotonergic blockade in the LPBN suggests that the circuits subserving sodium appetite are activated, but at the same time strongly inhibited through the LPBN, during cell dehydration. (C) 2003 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Hypothalamic paraventricular nucleus (PVN) has an important role in the regulation of water and sodium intake. Several researches described the presence of 5-HT1 receptors in the central nervous system. 5-HTIA was one of the prime receptors identified and it is found in the somatodendritic and post-synaptic forms. Therefore, the aim of this study was to investigate the participation of serotonergic 5-HT1A receptors in the PVN on the sodium intake induced by sodium depletion followed by 24 h of deprivation (injection of the diuretic furosemide plus 24 h of sodium-deficient diet). Rats (280-320 g) were submitted to the implant of cannulas bilaterally in the PVN. 5-HT injections (10 and 20 mu g/0.2 mu l) in the PVN reduced NaCl 1.8% intake. 8-OH-DPAT injections (2.5 and 5.0 fig/0.2 mu l) in the PVN also reduced NaCl 1.8% intake. pMPPF bilateral injections (5-HT1A antagonist) previously to 8-OH-DPAT injections have completely blocked the inhibitory effect over NaCl 1.8% intake. 5-HT1A antagonists partially reduced the inhibitory effect of 5-HT on NaCl 1.8% intake induced by sodium depletion. In contrast, the intake of palatable solution (2% sucrose) under body fluid-replete conditions was not changed after bilateral PVN 8-OH-DPTA injections. The results show that 5HT(1A) serotonergic mechanisms in the PVN modulate sodium intake induced by sodium loss. The finding that sucrose intake was not affected by PVN 5-HT1A activation suggests that the effects of the 5-HT1A treatments on the intake of NaCl are not due to mechanisms producing a nonspecific decrease of all ingestive behaviors. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Male Holtzman rats weighting 200-250 g were anesthetized with zoletil 50 mg/Kg (tiletamine chloridrate 125,0 mg and zolazepan chloridrate 125,0 mg) into quadriceps muscle and submitted an electrolytic lesion of the lateral hypothalamus (LH) and a stainless steel cannula was implanted into their median preoptic nucleus (MnPO). We investigated the effects of the injection into the (MnPO) of FK 409 (20 mug/0.5 mul), a nitric oxide (NO) donor, and N-W-nitro-L-arginine methyl ester (L-NAME) 40 mug/0.5 mul, a nitric oxide synthase inhibitor (NOSI), on the water and sodium appetite and the natriuretic, diuretic and cardiovascular effects induced by injection of L-NAME and FK 409 injected into MnPO in rats with LH lesions. Controls were injected with a similar volume of 0.15 M NaCl. L-NAME injected into MnPO produced an increase in water and sodium intake and in sodium and urine excretion and increase de mean arterial pressure (MAP). FK 409 injected into MnPO did not produce any change in the hydro electrolytic and cardiovascular parameters in LH-sham and lesioned rats. FK 409 injected before L-NAME attenuated its effects. These data show that electrolytic lesion of the LH reduces fluid and sodium intake as well as sodium and urine excretion, and the pressor effect induced by L-NAME. LH involvement with NO of the MnPO excitatory and inhibitory mechanisms related to water and sodium intake, sodium excretion and cardiovascular control is suggested. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)