956 resultados para NMR Magnetism Resonance Larmour Precession
Resumo:
Wide-line c.w. proton resonance investigations have been carried out on the ammonium halides, namely, ammonium chloride, ammonium bromide and ammonium iodide in the temperature range between 77 and 300 K and in the pressure range between 1 bar and 14 kbar. It has been found that the narrow iodide spectrum at 77 K broadens under the application of hydrostatic pressure. The barrier height for the ammonium ion motion in ammonium iodide under pressure has been estimated by carrying out a temperature variation study. The rotational potential for the motion of ammonium ion in ammonium iodide at 1 bar and 14 kbar has been calculated using earlier theoretical models and compared with values calculated for ammonium chloride and bromide. The barrier height in the case of ammonium iodide under pressure is found to be of the same order of magnitude as the value obtained in the case of ammonium bromide at atmospheric pressure indicating that the high pressure phase of ammonium iodide is likely to have the same structure as the low temperature ordered CsCl phase found in the case of the chloride and the bromide. The increase in the potential barrier height in the case of ammonium iodide under pressure indicates that the reorientational motion executed by the ammonium ions is inhibited by the application of pressure. This is also confirmed by the broadening of the spectral line at 77 K under the application of pressure.
Resumo:
Results of cw wide-line proton magnetic resonance investigations on ammonium sulphate and rubidium ammonium sulphate are presented. The pressure and temperature dependence of some of the properties of ammonium sulphate are explained stressing the importance of the role of the ammonium ions.
Resumo:
The proton-decoupled 13C NMR spectra of mixtures of liquid crystals with opposite diamagnetic anisotropies have been studied in the natural abundance of 13C. A new method to assign the spectral lines to specific carbons in the liquid crystalline phase has been developed. For this purpose, the assignments of lines in the isotropic media are required, and they were obtained from two-dimensional hetero-COSY experiments. From the spectra in the �critical� mixtures where both the orientations of the liquid crystal directors, with the alignments along and perpendicular to the direction of the magnetic field, �coexist,� the 13C chemical-shift anisotropies have been determined, assuming uniaxial symmetry.
Resumo:
An alternative pulse scheme which simplifies and improves the recently proposed P.E.COSY experiment is suggested for the retention of connected or unconnected transitions in a coupled spin system. An important feature of the proposed pulse scheme is the improved phase characteristics of the diagonal peaks. A comparison of various experiments designed for this purpose, namely COSY-45, E.COSY, P.E.COSY and the present scheme (A.E.COSY), is also presented. The suppression of unconnected transitions and the measurement of scalar coupling constants and their relative signs are illustrated from A.E.COSY spectra of 2,3-dibromopropionic acid and 2-(2-thienyl)pyridine.
Resumo:
Details of a simple and convenient high-pressure cell for continuous-wave, wide-line nuclear magnetic resonance investigation at high pressures and low temperatures are described. Experimental results obtained with the cell at 14*108 Pa and 77K for ammonium iodide are presented briefly.
Resumo:
IH NMR studies at 270 MHz on the synthetic alamethicin fragments Z-Aib-Pro-Aib-Ala-Aib-Ala-OMe (1-6), Boc-Gln-Aib-Val-Aib-Gly-Leu-Aib-OMe (7-1 3), Boc-Leu-Aib-Pro-Val-Aib-OMe (1 2-16), and Boc-Gly-Leu- Aib-Pro-Val-Aib-OMe (1 1-16) have been carried out in CDC13 and (CD3)2S0. The intramolecularly hydrogen bonded amide hydrogens in these peptides have been delineated by using solvent titration experiments and temperature coefficientsof NH chemical shifts in (CD3)+30. All the peptides adopt highly folded structures, characterized by intramolecular 4 - 1 hydrogen bonds. The 1-6 fragment adopts a 310 helical conformation with four hydrogen bonds, in agreement with earlier studies (Rao, Ch. P., Nagaraj, R., Rao, C. N. R., & Balaram, P. (1980) Biochemistry 19, 425-4311. The 7-13
Resumo:
Gels of various composition containing SiO2, Al2O3, and P2O5 have been investigated by employing high resolution magic-angle-spinning (MAS) 27Al, 29Si, and 31P NMR spectroscopy. Changes occurring in the NMR spectra as the gels are progressively heated have been examined to understand the nature of structural changes occurring during the crystallization of the gels. 27Al resonance is sensitive to changes in the coordination number even when the Al concentration is as low as 1 mol%. As the percentage of Al increases, the hydroxyl groups tend to be located on the Al sites while Si remains as SiO4/2 (Q4). Mullite is the major phase formed at higher temperature in the aluminosilicate gels. In the case of the silicophosphate gels, Si is present in the form of Q4 and Q3 species. There is a change in the coordination of Si from four to six as the gel is heated. The formation of six-coordinated Si is facilitated even at lower temperatures (~673 K) when the P2O5 content is high. The phosphorus atoms present as orthophosphoric acid units in the xerogels change over to metaphosphate-like units as the gel is heated to higher temperatures. In aluminosilicophosphates, Si is present as Q4 and Q3 species while P is present as metaphosphate units; Al in these gels seems to be inducted into the tetrahedral network positions.
Resumo:
Paramagnetic, or open-shell, systems are often encountered in the context of metalloproteins, and they are also an essential part of molecular magnets. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for chemical structure elucidation, but for paramagnetic molecules it is substantially more complicated than in the diamagnetic case. Before the present work, the theory of NMR of paramagnetic molecules was limited to spin-1/2 systems and it did not include relativistic corrections to the hyperfine effects. It also was not systematically expandable. --- The theory was first expanded by including hyperfine contributions up to the fourth power in the fine structure constant α. It was then reformulated and its scope widened to allow any spin state in any spatial symmetry. This involved including zero-field splitting effects. In both stages the theory was implemented into a separate analysis program. The different levels of theory were tested by demonstrative density functional calculations on molecules selected to showcase the relative strength of new NMR shielding terms. The theory was also tested in a joint experimental and computational effort to confirm assignment of 11 B signals. The new terms were found to be significant and comparable with the terms in the earlier levels of theory. The leading-order magnetic-field dependence of shielding in paramagnetic systems was formulated. The theory is now systematically expandable, allowing for higher-order field dependence and relativistic contributions. The prevailing experimental view of pseudocontact shift was found to be significantly incomplete, as it only includes specific geometric dependence, which is not present in most of the new terms introduced here. The computational uncertainty in density functional calculations of the Fermi contact hyperfine constant and zero-field splitting tensor sets a limit for quantitative prediction of paramagnetic shielding for now.
Resumo:
It is well known that in the time-domain acquisition of NMR data, signal-to-noise (S/N) improves as the square root of the number of transients accumulated. However, the amplitude of the measured signal varies during the time of detection, having a functional form dependent on the coherence detected. Matching the time spent signal averaging to the expected amplitude of the signal observed should also improve the detected signal-to-noise. Following this reasoning, Barna et al. (J Magn. Reson.75, 384, 1987) demonstrated the utility of exponential sampling in one- and two-dimensional NMR, using maximum-entropy methods to analyze the data. It is proposed here that for two-dimensional experiments the exponential sampling be replaced by exponential averaging. The data thus collected can be analyzed by standard fast-Fourier-transform routines. We demonstrate the utility of exponential averaging in 2D NOESY spectra of the protein ubiquitin, in which an enhanced SIN is observed. It is also shown that the method acquires delayed double-quantum-filtered COSY without phase distortion.
Resumo:
We report a single C-13 spin edited selective proton-proton correlation experiment to decipher overcrowded 13C coupled proton NMR spectra of weakly dipolar coupled spin systems. The experiment unravels the masked C-13 satellites in proton spectrum and permits the measurement of one bond carbon-proton residual dipolar couplings in I3S and for each diastereotopic proton in I2S groups. It also provides all the possible homonuclear proton-proton residual couplings which are otherwise difficult to extract from the broad and featureless one dimensional H-1 spectrum, in addition to enantiodifferentiation in a chiral molecule. Employment of heteronuclear (C-13) decoupling in the evolution period results in complete demixing of overlapped signals from enantiomers. The observed anomalous intensity pattern in strongly dipolar coupled methyl protons in methyl selective correlation experiment has been interpreted using polarization operator formalism. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The conformation and stability of pearl millet prolamin (pennisetin) were examined by using circular dichroism and C-13 nuclear magnetic resonance spectroscopy. The far UV spectrum of pennisetin in 70% (v/v) aqueous ethanol showed the presence of predominant alpha-helical structure and its occurrence in the alpha + beta class of protein. The far and near UV spectra of pennisetin in ethanol: trifluoroethanol also supported this observation. However pennisetin showed the presence of some helical structure in 8 M urea which is known to be a highly unordered structure forming solvent. A decrease in alpha helical content of native pennisetin was observed with rise in temperature from 5-75-degrees-C and this effect of temperature was found to be reversible. A C-13 NMR spectrum of pennisetin in 70% ethanol suggested a high degree of molecular mobility in ethanol. Comparison of the cross polarization spectrum with the single pulse excitation spectrum suggested pennisetin to be a heterogeneous protein.
Resumo:
Wide-line proton NMR spectra of ammonium thiocyanate have been recorded at 77 K as a function of external hydrostatic pressure. Contrary to expectations the line-width and the second moment decrease with the increase of pressure. This, however, is in accordance with the anomalous behaviour observed in other magnetic resonance studies of this compound and can be understood in terms of the change of electron density around the nitrogen atom of the SCN- group.
Resumo:
Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative approach is the method of amino acid selective `unlabeling' or reverse labeling, which involves selective unlabeling of specific amino acid types against a uniformly C-13/N-15 labeled background. Based on this method, we present a novel approach for sequential assignments in proteins. The method involves a new NMR experiment named, {(CO)-C-12 (i) -N-15 (i+1)}-filtered HSQC, which aids in linking the H-1(N)/N-15 resonances of the selectively unlabeled residue, i, and its C-terminal neighbor, i + 1, in HN-detected double and triple resonance spectra. This leads to the assignment of a tri-peptide segment from the knowledge of the amino acid types of residues: i - 1, i and i + 1, thereby speeding up the sequential assignment process. The method has the advantage of being relatively inexpensive, applicable to H-2 labeled protein and can be coupled with cell-free synthesis and/or automated assignment approaches. A detailed survey involving unlabeling of different amino acid types individually or in pairs reveals that the proposed approach is also robust to misincorporation of N-14 at undesired sites. Taken together, this study represents the first application of selective unlabeling for sequence specific resonance assignments and opens up new avenues to using this methodology in protein structural studies.
Resumo:
he local order around molybdenum and tungsten atoms in various sodium molybdophosphate and sodium tungstophosphate glasses has been investigated using extended X-ray absorption fine structure (EXAFS). Both molybdenum and tungsten atoms are present in six-coordinated environment in these glasses. Magic angle spinning nuclear magnetic resonance (MAS NMR) of P-31 suggests that metaphosphate or neutral [POO3/2] groups are present in these glasses.
Resumo:
The spinning sidebands observed in the C-13 MAS NMR spectra of cis,cis-mucononitrile oriented in liquid-crystalline media and of the neat sample in the solid state are studied. There are differences in the sideband intensity patterns in the two cases. These differences arise because the order parameters which characterize the orientation of the solute in the liquid-crystalline media differ for different axes. It is shown that, in general, the relative intensities of the sidebands contain information on the sign and magnitude of an effective chemical-shift parameter which is a function of the sum of the products of the principal components of the chemical-shift tensor and the corresponding order parameters with respect to the director. A method for obtaining the orientation of the carbon chemical-shift tensor is proposed. The carbon chemical-shift tensors obtained from gauge-including atomic orbital calculations are also presented for comparison. (C) 1996 Academic Press, Inc.